<style> div.sourceCode { overflow: hidden; } </style>



This document serves as a description of contents in FSI_code.zip and a guide to reproducing results described in “Over half of western United States’ most abundant tree species in decline” (Stanke et al., 2020; NCOMMS-20-20430). We describe all system requirements and installation guidelines required to install the publicly available rFIA R package, which contains most of the code necessary to reproduce our results (all remaining code available in FSI_code.zip). We provide a demonstration of our software (implemented in rFIA) as well as specific instructions for software use and replication of results. Contents of FIA and results directories within FSI_code.zip are empty initially. All required data will be downloaded and saved upon running .R scripts.

System Requirements

We have implemented methods to compute the Forest Stability Index (described in NCOMMS-20-20430) using publicly available USDA Forest Inventory and Analysis database in the open source R package, rFIA. Methods in the rFIA R package and other code used to produce the results outlined in NCOMMS-20-20430 have been tested on Windows 10, Ubuntu 18.04, and R versions 3.5.1 and 4.0.0. For more on the rFIA R package, check out our website.

The data used to produce results outlined in NCOMMS-20-20430 may be too large to be processed on a standard desktop computer (RAM limitations may prevent loading/processing in R). We recommend using a machine with at least 64GB of RAM to reproduce our results (all analysis presented in NCOMMS-20-20430 were completed on a machine with 384GB of RAM). We recognize that reviewers may not have access to these computational resources. In such event, we have provided an additional alternative workflow that uses a subset of the full dataset for demonstration and review purposes (see lines 51-54 of estimate.R).


Installation

Users can install the released version of rFIA from CRAN with:

install.packages('rFIA')

or the development version from GitHub with:

devtools::install_github('hunter-stanke/rFIA')

Software demonstration

As an example, we will implement the Forest Stability Index using USDA Forest Inventory and Analyis (FIA) data collected between 2001-2019 in the state of Colorado, USA. All code shown below can be run in R independent of the contents of FSI_code.zip. Processing time will vary with network speed as data must be downloaded from an online repository, however should not exceed 5 minutes on a normal desktop computer. All results will be returned as data.frame objects in R.

We first download the FIA data for Colorado using rFIA:

library(rFIA)
library(dplyr)

## Dowloading and loading into R
co <- getFIA('CO')

We can then use the fsi function to estimate the Forest Stability Index for all forest in the state using the ‘simple moving average’ estimator. As done in NCOMMS-20-20430, we allow slopes and intercepts of maximum size density curves to vary by forest type using the scaleBy argument:

## FSI for all forest
fsi(co, 
    method = 'sma',
    scaleBy = FORTYPCD)
## Modeling maximum size-density curve(s)...
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 1242
##    Unobserved stochastic nodes: 1289
##    Total graph size: 13774
## 
## Initializing model

## # A tibble: 7 x 20
##    YEAR      FSI PERC_FSI FSI_STATUS FSI_INT PERC_FSI_INT PREV_RD CURR_RD
##   <int>    <dbl>    <dbl> <chr>        <dbl>        <dbl>   <dbl>   <dbl>
## 1  2012 -0.00194   -0.728 Decline    2.31e-5      0.00813   0.266   0.247
## 2  2013 -0.00283   -1.05  Decline    1.37e-5      0.00466   0.269   0.241
## 3  2014 -0.00267   -1.04  Decline    8.58e-6      0.00301   0.258   0.231
## 4  2015 -0.00281   -1.06  Decline    6.71e-6      0.00228   0.265   0.237
## 5  2016 -0.00288   -1.09  Decline    5.53e-6      0.00189   0.263   0.234
## 6  2017 -0.00273   -1.06  Decline    4.43e-6      0.00155   0.258   0.231
## 7  2018 -0.00277   -1.06  Decline    3.94e-6      0.00136   0.262   0.234
## # ... with 12 more variables: TPA_RATE <dbl>, BA_RATE <dbl>, REMPER <dbl>,
## #   FSI_VAR <dbl>, PERC_FSI_VAR <dbl>, PREV_RD_VAR <dbl>, CURR_RD_VAR <dbl>,
## #   TPA_RATE_VAR <dbl>, BA_RATE_VAR <dbl>, REMPER_VAR <dbl>, nPlots <dbl>,
## #   N <int>

where FSI is the estimated Forest Stability Index for all forestland in CO by YEAR. SI_STATUS indicates the status of the population: decline if FSI is negative and confidence interval (FSI_INT) excludes zero; expand if FSI is positive and confidence interval excludes zero; stable otherwise. Estimates can be returned at the plot-level by specifying byPlot = TRUE:

## FSI plot-level
fsi(co, 
    byPlot = TRUE,
    scaleBy = FORTYPCD) %>%
   ## Forested plots only
   filter(PLOT_STATUS_CD == 1) %>%
   filter(!is.na(PREV_PLT_CN))
## Modeling maximum size-density curve(s)...
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 1242
##    Unobserved stochastic nodes: 1289
##    Total graph size: 13774
## 
## Initializing model

## # A tibble: 2,661 x 15
##     YEAR  PLT_CN PREV_PLT_CN PLOT_STATUS_CD PLOT_STATUS pltID REMPER      FSI
##    <int>   <dbl>       <dbl>          <int> <chr>       <chr>  <dbl>    <dbl>
##  1  2012 4.04e13     3.66e12              1 Forest      1_8_~   10.1  2.06e-4
##  2  2012 4.04e13     3.66e12              1 Forest      1_8_~    9.9  6.25e-4
##  3  2012 4.04e13     3.66e12              1 Forest      1_8_~   10.1  5.58e-3
##  4  2012 4.04e13     3.64e12              1 Forest      1_8_~    9.8 -1.41e-3
##  5  2012 4.04e13     3.64e12              1 Forest      1_8_~    9.8  1.43e-2
##  6  2012 4.04e13     3.64e12              1 Forest      1_8_~   10    1.53e-3
##  7  2012 4.04e13     3.64e12              1 Forest      1_8_~   10    3.95e-4
##  8  2012 4.04e13     3.64e12              1 Forest      1_8_~    9.9  3.61e-3
##  9  2012 4.04e13     3.64e12              1 Forest      1_8_~   10    8.93e-3
## 10  2012 4.04e13     3.65e12              1 Forest      1_8_~    9.5 -4.71e-3
## # ... with 2,651 more rows, and 7 more variables: PERC_FSI <dbl>,
## #   PREV_RD <dbl>, CURR_RD <dbl>, PREV_TPA <dbl>, CURR_TPA <dbl>,
## #   PREV_BAA <dbl>, CURR_BAA <dbl>

We can group estimates by species by specifying bySpecies = TRUE:

## FSI by species
fsi(co, 
    method = 'sma', 
    bySpecies = TRUE,
    scaleBy = FORTYPCD)
## Modeling maximum size-density curve(s)...
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 1242
##    Unobserved stochastic nodes: 1289
##    Total graph size: 13774
## 
## Initializing model

## # A tibble: 158 x 23
##     YEAR  SPCD COMMON_NAME SCIENTIFIC_NAME      FSI PERC_FSI FSI_STATUS FSI_INT
##    <int> <int> <chr>       <chr>              <dbl>    <dbl> <chr>        <dbl>
##  1  2012    15 white fir   Abies concolor   6.70e-4   0.676  Expand     2.38e-4
##  2  2012    18 corkbark f~ Abies lasiocar~  1.06e-3   1.94   Expand     5.20e-4
##  3  2012    19 subalpine ~ Abies lasiocar~ -9.97e-4  -0.689  Decline    1.15e-4
##  4  2012    65 Utah junip~ Juniperus oste~  2.74e-3   1.17   Expand     1.83e-4
##  5  2012    66 Rocky Moun~ Juniperus scop~ -9.90e-3  -6.70   Decline    3.84e-4
##  6  2012    69 oneseed ju~ Juniperus mono~  1.50e-2   8.44   Expand     1.51e-3
##  7  2012    93 Engelmann ~ Picea engelman~  1.90e-4   0.0880 Expand     9.63e-5
##  8  2012    96 blue spruce Picea pungens    4.12e-3   3.13   Expand     3.38e-4
##  9  2012   102 Rocky Moun~ Pinus aristata   4.34e-4   0.480  Expand     7.27e-5
## 10  2012   106 common or ~ Pinus edulis    -8.49e-4  -0.828  Decline    3.16e-5
## # ... with 148 more rows, and 15 more variables: PERC_FSI_INT <dbl>,
## #   PREV_RD <dbl>, CURR_RD <dbl>, TPA_RATE <dbl>, BA_RATE <dbl>, REMPER <dbl>,
## #   FSI_VAR <dbl>, PERC_FSI_VAR <dbl>, PREV_RD_VAR <dbl>, CURR_RD_VAR <dbl>,
## #   TPA_RATE_VAR <dbl>, BA_RATE_VAR <dbl>, REMPER_VAR <dbl>, nPlots <dbl>,
## #   N <int>

or by any other grouping variable contained in the co database using the grpBy argument:

## Grouping by ownership class
fsi(co, 
    method = 'sma',
    grpBy = OWNGRPCD,
    scaleBy = FORTYPCD)
## Modeling maximum size-density curve(s)...
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
## Graph information:
##    Observed stochastic nodes: 1242
##    Unobserved stochastic nodes: 1289
##    Total graph size: 13774
## 
## Initializing model

## # A tibble: 28 x 21
##     YEAR OWNGRPCD      FSI PERC_FSI FSI_STATUS FSI_INT PERC_FSI_INT PREV_RD
##    <int>    <int>    <dbl>    <dbl> <chr>        <dbl>        <dbl>   <dbl>
##  1  2012       10 -3.19e-3   -1.04  Decline    5.33e-5      0.0159    0.308
##  2  2012       20 -3.84e-4   -0.161 Decline    3.33e-5      0.0135    0.238
##  3  2012       30  3.29e-4    0.128 Expand     1.14e-4      0.0453    0.257
##  4  2012       40 -1.23e-3   -0.570 Decline    4.30e-5      0.0187    0.216
##  5  2013       10 -4.46e-3   -1.43  Decline    3.08e-5      0.00881   0.311
##  6  2013       20 -1.18e-3   -0.497 Decline    2.14e-5      0.00844   0.238
##  7  2013       30  4.01e-4    0.184 Expand     5.28e-5      0.0247    0.219
##  8  2013       40 -1.26e-3   -0.561 Decline    2.47e-5      0.0104    0.225
##  9  2014       10 -4.20e-3   -1.42  Decline    1.85e-5      0.00554   0.295
## 10  2014       20 -1.29e-3   -0.547 Decline    1.46e-5      0.00577   0.236
## # ... with 18 more rows, and 13 more variables: CURR_RD <dbl>, TPA_RATE <dbl>,
## #   BA_RATE <dbl>, REMPER <dbl>, FSI_VAR <dbl>, PERC_FSI_VAR <dbl>,
## #   PREV_RD_VAR <dbl>, CURR_RD_VAR <dbl>, TPA_RATE_VAR <dbl>,
## #   BA_RATE_VAR <dbl>, REMPER_VAR <dbl>, nPlots <dbl>, N <int>

Instructions for use

Applying the FSI to our study region

To apply the FSI to our study region (i.e., western US), we simply expand our population of interest to include Washington, Oregon, California, Idaho, Montana, Utah, Nevada, Arizona, New Mexico, and Colorado:

## Download and load data for all states
db <- getFIA(c('WA', 'OR', 'CA', 'NV', 'AZ',
               'NM', 'CO', 'UT', 'MT', 'ID'))

## Estimate the FSI by species across the full
## study region (range-wide indices)
rangeWide <- fsi(db, 
                 method = 'sma',
                 bySpecies = TRUE,
                 scaleBy = FORTYPCD)

These data are large (~8GB), and download speeds will depend on a users network connection. Once downloaded, processing should not exceed 10 minutes.

Reproducing of our results

To reproduce the results outlined in NCOMMS-20-20430, modify working directory in estimate.R, climate.R, and model.R to the location where FSI_code is unzipped. Then simply source the .R files listed at the root of the FSI_code directory with the following (must be run in this sequence):

## Download data and estimate the FSI by 
## populations of interest
source('./FSI_code/estimate.R')


## Run disturbance model
source('./FSI_code/disturbMod.R')

The above will (1) download all FIA data required for the analysis, and save the data in the FIA directory. (2) Produce estimates of the FSI for populations of interest (i.e., species). Results will be stored in the results directory, with plot-level estimates found in results/plt, ecoregion-scale estimates found in results/spatial and range-wide estimates found in results/regionWide. Model results (estimated coefficients and associated credible intervals) will be stored in results/model.