/unsupervised-medical-image-segmentation

Code for "Contrastive Registration for Unsupervised Medical Image Segmentation".

Primary LanguagePython

Unsupervised Medical Image Segmentation

by Lihao Liu, Angelica I Aviles-Rivero, and Carola-Bibiane Schönlieb.

Introduction

In this repository, we provide the PyTorch implementation for Contrastive Registration for Unsupervised Medical Image Segmentation.

Requirement

torch 1.5.0
torchvision 0.4.2
SimpleITK 1.2.4
opencv-python 4.2.0.32

Usage

  1. Clone the repository:

    git clone https://github.com/lihaoliu-cambridge/unsupervised-medical-image-segmentation.git
    cd unsupervised-medical-image-segmentation
  2. Download the images and segmentation masks for LPBA40 dataset:

    LPBA40 Images: LPBA40_rigidly_registered_pairs.tar.gz
    LPBA40 Labels: LPBA40_rigidly_registered_label_pairs.tar.gz

  3. Unzip them in folder datasets/LPBA40:

    datasets/LPBA40/LPBA40_rigidly_registered_pairs
    datasets/LPBA40/LPBA40_rigidly_registered_label_pairs

  4. Pre-process the LPBA40 dataset:

    cd scripts
    python preprocessing_lpba40.py

    output results:

    datasets/LPBA40/LPBA40_rigidly_registered_pairs_histogram_standardization_small
    datasets/LPBA40/LPBA40_rigidly_registered_label_pairs_small

    This step aims to standardize the distribute of all images in a similar range:

  5. Train the model:

    cd ..
    python train.py  --no_html  --dataroot ./datasets/LPBA40/LPBA40_rigidly_registered_pairs_histogram_standardization_small  --dataset_mode lpba40_contrastive_learning  --batchSize 8  --lr 0.003  --model registration_model_contrastive_learning  --name lpba40_contrastive_learning
    
  6. Test the saved model:

    python test_dice.py  --no_html  --dataroot ./datasets/LPBA40/LPBA40_rigidly_registered_pairs_histogram_standardization_small  --dataset_mode lpba40_contrastive_learning  --batchSize 1  --model registration_model_contrastive_learning  --name lpba40_contrastive_learning
    
    

Note

Current model is built based on CVPR-2018 version VoxelMorph (without the probabilistic model and smooth loss).

Citation

If you use our code for your research, please cite our paper:

@article{liu2020contrastive,
  title={Contrastive Registration for Unsupervised Medical Image Segmentation},
  author={Liu, Lihao and Aviles-Rivero, Angelica I and Sch{\"o}nlieb, Carola-Bibiane},
  journal={arXiv preprint arXiv:2011.08894},
  year={2020}
}

Question

Please open an issue or email lhliu1994@gmail.com for any questions.