Code repo for paper "Low Latency Point Cloud Rendering with Learned Splatting", CVPR Workshop (AIS: Vision, Graphics and AI for Streaming), 2024.
Yueyu Hu, Ran Gong, Yao Wang. "Bits-to-Photon: End-to-End Learned Scalable Point Cloud Compression for Direct Rendering", arXiv:2406.05915, 2024.
This development of this repo is largely helped by and depending on the following open-source projects:
Pointersect: https://github.com/apple/ml-pointersect
3D Gaussian Splatting: https://github.com/graphdeco-inria/gaussian-splatting
The code is tested with PyTorch == 1.12.1 and CUDA 11.3, on NVIDIA RTX 4080 Super. Install PyTorch with,
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
Please follow https://github.com/NVIDIA/MinkowskiEngine to install MinkowskiEngine. The following command might simply work,
sudo apt install build-essential python3-dev libopenblas-dev
pip install -U MinkowskiEngine --install-option="--blas=openblas" -v --no-deps
pip install imageio open3d==0.16.0 opencv-python torch_scatter xatlas scikit-image scipy pyexr pytorch_msssim lpips
cd diff-gaussian-rasterization
MAKEFLAGS="-j8" pip install .
python simple_benchmark.py pcrender --dataset_root ./example/THuman-256 --scale_factor 256 --fov 45 --voxelized --id_list 0519
python simple_benchmark.py pcrender --dataset_root ./example/THuman-800K --scale_factor 448 --fov 45 --id_list 0519
We provide as script sample_point_cloud_from_mesh.py
that samples point clouds from meshes for testing. Please refer to the help message by python sample_point_cloud_from_mesh.py -h
for usage.