Useful machine learning materials
- Machine Learning, T. Mitchell.
- Pattern Recognition and Machine Learning, C. Bishop.
- Machine Learning: a Probabilistic Perspective, K. Murphy.
- Linear Algebra, D. Cherney, et al.
- All of Statistics: A Concise Course in Statistical Inference, L. Wasserman.
- High-Dimensional Probability: An Introduction with Applications in Data Science, R. Vershynin.
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction, T. Hastie, et al.
- Understanding Machine Learning: From Theory to Algorithms Shalev-Shwartz, Ben-David.
- Convex Optimization, S. Boyd and L. Vandenberghe.
- Convex Optimization: Algorithms and Complexity, S. Bubeck.
- Optimization Methods for Large-Scale Machine Learning, L, Bottou, et al.
- Deep Learning, I. Goodfellow and Y. Bengio and A. Courville
- Elements of Information Theory, T. M. Cover, J. A. Thomas
- TensorFlow, Keras.
- PyTorch.
- MXNet.
- A simple Parameter Server prototype in PyTorch.
- Horovod. A distributed training framework developed by Uber.
- AWS.
- GoogleCloud.
- Azure.
- CloudLab, for researchers in academia, totally free.