Distributed execution of bioinformatics tools on Apache Spark. Apache 2 licensed.
Install
- JDK 1.8 or later, https://openjdk.java.net
- Apache Maven 3.3.9 or later, https://maven.apache.org
To build
$ mvn install
Cannoli is available in Conda via Bioconda, https://bioconda.github.io/
$ conda install cannoli
Cannoli is available in Homebrew via Brewsci/bio, https://github.com/brewsci/homebrew-bio
$ brew install brewsci/bio/cannoli
Cannoli is available in Docker via BioContainers, https://biocontainers.pro
$ docker pull quay.io/biocontainers/cannoli:{tag}
Find {tag}
on the tag search page, https://quay.io/repository/biocontainers/cannoli?tab=tags
To run the Cannoli interactive shell, based on the ADAM shell, which in turn extends the
Apache Spark shell, use cannoli-shell
.
Wildcard import from ADAMContext
to add implicit methods to SparkContext for loading
alignments, features, fragments, genotypes, reads, sequences, slices, variant contexts,
or variants, such as sc.loadPairedFastqAsFragments
below.
Wildcard import from Cannoli
to add implicit methods for calling external commands to the
genomic datasets loaded by ADAM, such as reads.alignWithBwaMem
below.
$ ./bin/cannoli-shell \
<spark-args>
scala> import org.bdgenomics.adam.ds.ADAMContext._
import org.bdgenomics.adam.ds.ADAMContext._
scala> import org.bdgenomics.cannoli.Cannoli._
import org.bdgenomics.cannoli.Cannoli._
scala> import org.bdgenomics.cannoli.BwaMemArgs
import org.bdgenomics.cannoli.BwaMemArgs
scala> val args = new BwaMemArgs()
args: org.bdgenomics.cannoli.BwaMemArgs = org.bdgenomics.cannoli.BwaMemArgs@54234569
scala> args.indexPath = "hg38.fa"
args.indexPath: String = hg38.fa
scala> args.sampleId = "sample"
args.sampleId: String = sample
scala> val reads = sc.loadPairedFastqAsFragments("sample1.fq", "sample2.fq")
reads: org.bdgenomics.adam.ds.fragment.FragmentRDD = RDDBoundFragmentRDD with 0 reference
sequences, 0 read groups, and 0 processing steps
scala> val alignments = reads.alignWithBwaMem(args)
alignments: org.bdgenomics.adam.ds.read.AlignmentRecordRDD = RDDBoundAlignmentRecordRDD with
0 reference sequences, 0 read groups, and 0 processing steps
scala> alignments.saveAsParquet("sample.alignments.adam")
To run Cannoli commands from the command line, use cannoli-submit
.
Note the --
argument separator between Spark arguments and Cannoli command arguments.
$ ./bin/cannoli-submit --help
_ _
| (_)
___ __ _ _ __ _ __ ___ | |_
/ __/ _` | '_ \| '_ \ / _ \| | |
| (_| (_| | | | | | | | (_) | | |
\___\__,_|_| |_|_| |_|\___/|_|_|
Usage: cannoli-submit [<spark-args> --] <cannoli-args>
Choose one of the following commands:
CANNOLI
bcftoolsCall : Call variant contexts with bcftools call.
bcftoolsMpileup : Call variants from an alignment dataset with bcftools mpileup.
bcftoolsNorm : Normalize variant contexts with bcftools norm.
bedtoolsIntersect : Intersect the features in a feature dataset with Bedtools intersect.
blastn : Align DNA sequences in a sequence dataset with blastn.
bowtie : Align paired-end reads in a fragment dataset with Bowtie.
bowtie2 : Align paired-end reads in a fragment dataset with Bowtie 2.
singleEndBowtie2 : Align unaligned single-end reads in an alignment dataset with Bowtie 2.
bwaMem : Align paired-end reads in a fragment dataset with bwa mem.
bwaMem2 : Align paired-end reads in a fragment dataset with Bwa-mem2.
freebayes : Call variants from an alignment dataset with Freebayes.
gem : Align paired-end reads in a fragment dataset with GEM-Mapper.
magicBlast : Align paired-end reads in a fragment dataset with Magic-BLAST.
minimap2 : Align paired-end reads in a fragment dataset with Minimap2.
longMinimap2 : Align long reads in a sequence dataset with Minimap2.
singleEndMinimap2 : Align unaligned single-end reads in an alignment dataset with Minimap2.
samtoolsMpileup : Call variants from an alignment dataset with samtools mpileup.
snap : Align paired-end reads in a fragment dataset with SNAP.
snpEff : Annotate variant contexts with SnpEff.
star : Align paired-end reads in a fragment dataset with STAR-Mapper.
singleEndStar : Align unaligned single-end reads in an alignment dataset with STAR-Mapper.
unimap : Align paired-end reads in a fragment dataset with Unimap.
longUnimap : Align long reads in a sequence dataset with Unimap.
singleEndUnimap : Align unaligned single-end reads in an alignment dataset with Unimap.
vep : Annotate variant contexts with Ensembl VEP.
vtNormalize : Normalize variant contexts with vt normalize.
CANNOLI TOOLS
interleaveFastq : Interleaves two FASTQ files.
sampleReads : Sample reads from interleaved FASTQ format.
External commands wrapped by Cannoli should be installed to each executor node in the cluster
$ ./bin/cannoli-submit \
<spark-args>
-- \
bwaMem \
sample.unaligned.fragments.adam \
sample.bwa.hg38.alignments.adam \
-sample_id sample \
-index hg38.fa \
-sequence_dictionary hg38.dict \
-fragments \
-add_files
or can be run using Docker
$ ./bin/cannoli-submit \
<spark-args>
-- \
bwaMem \
sample.unaligned.fragments.adam \
sample.bwa.hg38.alignments.adam \
-sample_id sample \
-index hg38.fa \
-sequence_dictionary hg38.dict \
-fragments \
-use_docker \
-image quay.io/biocontainers/bwa:0.7.17--hed695b0_7 \
-add_files
or can be run using Singularity
$ ./bin/cannoli-submit \
<spark-args>
-- \
bwaMem \
sample.unaligned.fragments.adam \
sample.bwa.hg38.alignments.adam \
-sample_id sample \
-index hg38.fa \
-sequence_dictionary hg38.dict \
-fragments \
-use_singularity \
-image quay.io/biocontainers/bwa:0.7.17--hed695b0_7 \
-add_files