Tools for quickly normalizing image datasets for machine learning. I maintain a series of video tutorials on normalizing image datasets—many utilizing this set of scripts—on my YouTube page.
Note: If you’re installing this on a Mac, I highly recommend installing it alongside Anaconda. A video tutorial is available here.
git clone https://github.com/dvschultz/dataset-tools.git
cd dataset-tools
pip install -r requirements.txt
python dataset-tools.py --input_folder path/to/input/ --output_folder path/to/output/
--verbose
: Print progress to console.--input_folder
: Directory path to the inputs folder. Default:./input/
--output_folder
: Directory path to the outputs folder. Default:./output/
--process_type
: Process to use. Options:resize
,square
,crop
,crop_to_square
,canny
,canny-pix2pix
,scale
,crop_square_patch
,many_squares
Default:resize
--blur_type
: Blur process to use. Use with--process_type canny
. Options:none
,gaussian
,median
. Default:none
--blur_amount
: Amount of blur to apply (use odd integers only). Use with--blur_type
. Default:1
--max_size
: Maximum width or height of the output images. Default:512
--force_max
: forces the resize to the max size (by default--max_size
only scales down)--direction
: Paired Direction. For use with pix2pix process. Options:AtoB
,BtoA
. Default:AtoB
--mirror
: Adds mirror augmentation.--rotate
: Adds 90 degree rotation augmentation.--border_type
: Border style to use when using thesquare
process type Options:stretch
,reflect
,solid
(solid
requires--border-color
) Default:stretch
--border_color
: border color to use with thesolid
border type; use BGR values from 0 to 255 Example:255,0,0
is blue--height
: height of crop in pixels; use with--process_type crop
or--process_type resize
(when used withresize
it will distort the aspect ratio)--width
: width of crop in pixels; use with--process_type crop
or--process_type resize
(when used withresize
it will distort the aspect ratio)--shift_y
: y (Top to bottom) amount to shift in pixels; negative values will move it up, positive will move it down; use with--process_type crop
--shift_x
: x (Left to right) amount to shift in pixels; negative values will move it left, positive will move it right; use with--process_type crop
--numbered
: give number all these images in a sequence from 0--file_extension
: file format to output Options:jpg
,png
Default:png
Remove duplicate images from your dataset
--absolute
: Use absolute matching. Default--avg_match
: average pixel difference between images (use with--relative
) Default:1.0
--file_extension
: file format to output Options:jpg
,png
Default:png
--input_folder
: Directory path to the inputs folder. Default:./input/
--output_folder
: Directory path to the outputs folder. Default:./output/
--relative
: Use relative matching.--verbose
: Print progress to console.
python dedupe.py --input_folder path/to/input/ --output_folder path/to/output/
python dedupe.py --input_folder path/to/input/ --output_folder path/to/output/ --relative
This tool produces randomized multi-scale crops. A video tutorial is here
--input_folder
: Directory path to the inputs folder. Default:./input/
--output_folder
: Directory path to the outputs folder. Default:./output/
--file_extension
: file format to output Options:jpg
,png
Default:png
--max_size
: Maximum width and height of the crop. Default:None
--min_size
: Minimum width and height of the crop. Default:1024
--resize
: size to resize crops to (ifNone
it will default tomin_size
). Default:None
--no_resize
: If set the crops will not be resized. Default:False
--verbose
: Print progress to console.
--file_extension
: file format to output Options:jpg
,png
Default:png
--verbose
: Print progress to console.--input_folder
: Directory path to the inputs folder. Default:./input/
--output_folder
: Directory path to the outputs folder. Default:./output/
--process_type
: Process to use. Options:sort
,exclude
Default:exclude
--max_size
: Maximum width or height of the output images. Default:2048
--min_size
: Minimum width or height of the output images. Default:1024
--min_ratio
: Ratio of image (height/width). Default:1.0
--exact
: Match to exact specs. Use--min_size
for shorter dimension,--max_size
for longer dimension