/time_series_augmentation

An example of time series augmentation methods with Keras

Primary LanguageJupyter NotebookApache License 2.0Apache-2.0

Time Series Augmentation

This is a collection of time series data augmentation methods and an example use using Keras.

News

  • 2020/04/16: Repository Created.
  • 2020/06/22: Accepted to ICPR 2020 - B. K. Iwana and S. Uchida, Time Series Data Augmentation for Neural Networks by Time Warping with a Discriminative Teacher, ICPR 2020 LINK
  • 2020/07/31: Survey Paper Posted on arXiv - B. K. Iwana and S. Uchida An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks, arXiv LINK
  • 2021/05/11: Tensorflow v1 branched. The master will now support Tensorflow v2.
  • 2021/07/15: Survey Paper Published on PLOS ONE - B. K. Iwana and S. Uchida An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks, PLOS ONE 16(7): e0254841, LINK

Requires

This code was developed in Python 3.6.9. and requires Tensorflow 2.4.1 and Keras 2.2.4

Normal Install

pip install tensorflow-gpu==2.4.1 keras==2.2.4 numpy==1.19.5 matplotlib==2.2.2 scikit-image==0.15.0 tqdm

Docker

cd docker
sudo docker build -t tsa .
docker run --runtime nvidia -rm -it -p 127.0.0.1:8888:8888 -v `pwd`:/work -w /work tsa jupyter notebook --allow-root

Newer docker installs might use --gpus all instead of --runtime nvidia

Dataset

main.py was designed to use the UCR Time Series Archive 2018 datasets. To install the datasets, download the .zip file from https://www.cs.ucr.edu/~eamonn/time_series_data_2018/ and extract the contents into the data folder.

Usage

Description of Time Series Augmentation Methods

Augmentation description

Jupyter Example

Jupyter Notebook

Keras Example

Example: To train a 1D VGG on the FiftyWords dataset from the UCR Time Series Archive 2018 with 4x the training dataset in Jittering, use:

python3 main.py --gpus=0 --dataset=CBF --preset_files --ucr2018 --normalize_input --train --save --jitter --augmentation_ratio=4 --model=vgg

Citation

B. K. Iwana and S. Uchida, "An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks," arXiv, 2020.

@article{Iwana_2021,
	doi = {10.1371/journal.pone.0254841},
	url = {https://doi.org/10.1371%2Fjournal.pone.0254841},
	year = 2021,
	month = {jul},
	publisher = {Public Library of Science ({PLoS})},
	volume = {16},
	number = {7},
	pages = {e0254841},
	author = {Brian Kenji Iwana and Seiichi Uchida},
	title = {An empirical survey of data augmentation for time series classification with neural networks},
	journal = {{PLOS} {ONE}}
}