/onnx-tensorrt

ONNX-TensorRT: TensorRT backend for ONNX

Primary LanguageC++MIT LicenseMIT

TensorRT backend for ONNX

Parses ONNX models for execution with TensorRT.

See also the TensorRT documentation.

ONNX Python backend usage

The TensorRT backend for ONNX can be used in Python as follows:

import onnx
import onnx_tensorrt.backend as backend
import numpy as np

model = onnx.load("/path/to/model.onnx")
engine = backend.prepare(model, device='CUDA:1')
input_data = np.random.random(size=(32, 3, 224, 224)).astype(np.float32)
output_data = engine.run(input_data)[0]
print(output_data)
print(output_data.shape)

Executable usage

ONNX models can be converted to serialized TensorRT engines using the onnx2trt executable:

onnx2trt my_model.onnx -o my_engine.trt

ONNX models can also be converted to human-readable text:

onnx2trt my_model.onnx -t my_model.onnx.txt

See more usage information by running:

onnx2trt -h

C++ library usage

The model parser library, libnvonnxparser.so, has a C++ API declared in this header:

NvOnnxParser.h

TensorRT engines built using this parser must use the plugin factory provided in libnvonnxparser_runtime.so, which has a C++ API declared in this header:

NvOnnxParserRuntime.h

Installation

Dependencies

Download the code

Clone the code from GitHub.

git clone --recursive https://github.com/onnx/onnx-tensorrt.git

Executable and libraries

Suppose your TensorRT library is located at /opt/tensorrt. Build the onnx2trt executable and the libnvonnxparser* libraries using CMake:

mkdir build
cd build
cmake .. -DTENSORRT_ROOT=/opt/tensorrt
make -j8
sudo make install

Python modules

Build the Python wrappers and modules by running:

python setup.py build
sudo python setup.py install

Docker image

Build the onnx_tensorrt Docker image by running:

cp /path/to/TensorRT-3.0.*.tar.gz .
docker build -t onnx_tensorrt .

Tests

After installation (or inside the Docker container), ONNX backend tests can be run as follows:

Real model tests only:

python onnx_backend_test.py OnnxBackendRealModelTest

All tests:

python onnx_backend_test.py

You can use -v flag to make output more verbose.

Pre-trained models

Pre-trained Caffe2 models in ONNX format can be found at https://github.com/onnx/models