-
Reinforcement Learning: An Introduction (Second Edition, in progress)
- Richard S. Sutton and Andrew G. Barto
- https://github.com/ShangtongZhang/reinforcement-learning-an-introduction
-
Algorithms for Reinforcement Learning
- Csaba Szepesvári
-
- David Silver
- 2015
- University College London
- Lecture Videos (YouTube)
-
MIT 6.S094: Deep Learning for Self-Driving Cars
- 2017
- MIT
- Lecture Videos (YouTube)
-
CS 294: Deep Reinforcement Learning, Fall 2017
- Sergey Levine
- 2017
- UC Berkeley
- Lecture Videos (YouTube)
-
CS 294: Deep Reinforcement Learning, Spring 2017
- Sergey Levine, John Schulman, Chelsea Finn
- 2017
- UC Berkeley
- Lecture Videos (YouTube)
-
CS 294: Deep Reinforcement Learning, Fall 2015
- John Schulman, Pieter Abbeel
- 2015
- UC Berkeley
-
CS 287: Advanced Robotics, Fall 2015
- Pieter Abbeel
- 2015
- University of California at Berkeley
-
Deep Reinforcement Learning and Control Spring 2017, CMU 10703
- Katerina Fragkiadaki, Ruslan Satakhutdinov
- 2017
- CMU
-
REINFORCEMENT LEARNING 2016/2017
- 2016
- The University of Edinburgh
-
- Saturnino Luz
- Trinity College Dublin
-
Deep Learning (DLSS) and Reinforcement Learning (RLSS) Summer School, Montreal 2017
-
Deep Reinforcement Learning Through Policy Optimization
- Pieter Abbeel
- Jan 23, 2017
-
Deterministic Policy Gradient Algorithms
- David Silver
- DDPG
-
- Pieter Abbeel
- Aug. 23, 2016
-
Deep Reinforcement Learning: Pong from Pixels
- Andrej Karpathy
- May 31, 2016
-
Simple Reinforcement Learning with Tensorflow Part 0: Q-Learning with Tables and Neural Networks
- Arthur Juliani
- Aug 25, 2016
-
Before AlphaGo there was TD-Gammon
- Jim Fleming
- Apr 4, 2016
- https://github.com/fomorians/td-gammon
-
Learning Policies For Learning Policies — Meta Reinforcement Learning (RL²) in Tensorflow
- Arthur Juliani
- Jan 30, 2017
- https://github.com/awjuliani/Meta-RL
-
DeepMind’s PathNet: A Modular Deep Learning Architecture for AGI
- Carlos E. Perez
- Feb 4, 2017
-
AlphaGo Zero - How and Why it Works
- Tim Wheeler
- November 2, 2017
-
Deep Reinforcement Learning Doesn't Work Yet
- Feb 14, 2018
-
- http://www.arcadelearningenvironment.org/
- https://arxiv.org/abs/1207.4708
- Thu, 19 Jul 2012
-
- https://gym.openai.com/
- OpenAI Gym Beta
- APRIL 27, 2016
- https://arxiv.org/abs/1606.01540
- Sun, 5 Jun 2016
-
- http://vizdoom.cs.put.edu.pl/
- https://arxiv.org/abs/1605.02097
- Fri, 6 May 2016
- related
-
- https://arxiv.org/abs/1610.03793
- Wed, 12 Oct 2016
- https://arxiv.org/abs/1709.09480
- Wed, 27 Sep 2017
- https://arxiv.org/abs/1610.03793
-
- gym-rle
- https://arxiv.org/abs/1611.02205
- Mon, 7 Nov 2016
-
- https://arxiv.org/abs/1611.00625
- Tue, 1 Nov 2016
- StarData
- https://arxiv.org/abs/1611.00625
-
- Open-sourcing DeepMind Lab
- Saturday, 3 December 2016
- https://arxiv.org/abs/1612.03801
- Mon, 12 Dec 2016
- Open-sourcing DeepMind Lab
-
- https://universe.openai.com/
- Universe
- DECEMBER 5, 2016
-
- Roboschool
- MAY 15, 2017
- Roboschool
-
- http://parl.ai/
- https://arxiv.org/abs/1705.06476
- Thu, 18 May 2017
-
ELF: An Extensive, Lightweight and Flexible Platform for Game Research
- https://arxiv.org/abs/1707.01067
- Tue, 4 Jul 2017
- https://arxiv.org/abs/1707.01067
-
PySC2 - StarCraft II Learning Environment
- https://github.com/Blizzard/s2client-proto
- DeepMind and Blizzard open StarCraft II as an AI research environment
- Wednesday, 9 August 2017
- https://arxiv.org/abs/1708.04782
- Wed, 16 Aug 2017
-
AI2-THOR: Photorealistic Interactive Environments for AI Agents
-
- https://arxiv.org/abs/1712.09381
- 26 Dec 2017
- https://arxiv.org/abs/1712.09381
-
The DeepMind Control Suite and Control Package
- https://arxiv.org/abs/1801.00690
- 2 Jan 2018
- https://arxiv.org/abs/1801.00690
-
House3D: A Rich and Realistic 3D Environment
- https://arxiv.org/abs/1801.02209
- 7 Jan 2018
- https://arxiv.org/abs/1801.02209
-
- https://arxiv.org/abs/1604.06778
- Fri, 22 Apr 2016
- https://arxiv.org/abs/1604.06778
-
- Introducing: Unity Machine Learning Agents
- September 19, 2017
- Introducing: Unity Machine Learning Agents
-
Deep Reinforcement Learning: An Overview
-
A Brief Survey of Deep Reinforcement Learning
-
Deep Learning for Video Game Playing
-
A Survey of Monte Carlo Tree Search Methods
- mcts.ai
- Monte Carlo Tree Search (MCTS) research hub