/pytorch_random_erasing

A PyTorch implementation of RandomErasing

Primary LanguagePythonMIT LicenseMIT

PyTorch Implementation of RandomErasing

Usage

$ python main.py --block_type basic --depth 110 --use_random_erase --random_erase_prob 0.5 --random_erase_area_ratio_range '[0.02, 0.4]' --random_erase_min_aspect_ratio 0.3 --random_erase_max_attempt 20 --outdir results

Results on CIFAR-10

Model Test Error (median of 5 runs) Training Time
ResNet-preact-56 w/o RandomErasing 5.85 98 min
ResNet-preact-56 w/ RandomErasing 5.22 98 min

w/o RandomErasing

$ python -u main.py --depth 56 --block_type basic --base_lr 0.2 --seed 7 --outdir results/wo_random_erasing/00

w/ RandomErasing

$ python -u main.py --depth 56 --block_type basic --base_lr 0.2 --use_random_erase --seed 7 --outdir results/w_random_erasing/00

References