/pytorch_resnet_preact

A PyTorch implementation of ResNet-preact

Primary LanguagePythonMIT LicenseMIT

PyTorch Implementation of ResNet-preact

Requirements

Usage

$ python train.py model.block_type basic model.depth 110 run.outdir results

Use PyramidNet-like Residual Unit

$ python train.py model.block_type basic model.depth 110 model.remove_first_relu True model.add_last_bn True run.outdir results

Results on CIFAR-10

Model Test Error (median of 3 runs) Test Error (in paper) Training Time
ResNet-preact-110 6.47 6.37 (median of 5 runs) 3h05m
ResNet-preact-164 bottleneck 5.90 5.46 (median of 5 runs) 4h01m

References

  • He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. arXiv:1512.03385
  • He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016. arXiv:1603.05027, Torch implementation