/pytorch_wrn

A PyTorch implementation of WRN

Primary LanguagePythonMIT LicenseMIT

PyTorch Implementation of WRN

Usage

$ python main.py --depth 28 --widening_factor 10 --outdir results

Results on CIFAR-10

Model Test Error (median of 3 runs) Test Error (in paper) Training Time
WRN-28-10 4.03 4.00 (median of 5 runs) 16h10m

NOTE This model was trained with batch size 64 (128 in paper).

References

  • Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In Richard C. Wilson, Edwin R. Hancock and William A. P. Smith, editors, Proceedings of the British Machine Vision Conference (BMVC), pages 87.1-87.12. BMVA Press, September 2016. arXiv:1605.07146, Torch implementation