/3DMPPE_ROOTNET_RELEASE

Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image ", ICCV 2019

Primary LanguagePythonMIT LicenseMIT

PWC

PWC

RootNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image"

Introduction

This repo is official PyTorch implementation of Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image (ICCV 2019). It contains RootNet part.

What this repo provides:

Dependencies

This code is tested under Ubuntu 16.04, CUDA 9.0, cuDNN 7.1 environment with two NVIDIA 1080Ti GPUs.

Python 3.6.5 version with Anaconda 3 is used for development.

Directory

Root

The ${POSE_ROOT} is described as below.

${POSE_ROOT}
|-- data
|-- common
|-- main
`-- output
  • data contains data loading codes and soft links to images and annotations directories.
  • common contains kernel codes for 3d multi-person pose estimation system.
  • main contains high-level codes for training or testing the network.
  • output contains log, trained models, visualized outputs, and test result.

Data

You need to follow directory structure of the data as below.

${POSE_ROOT}
|-- data
|-- |-- Human36M
|   `-- |-- bbox
|       |   |-- bbox_human36m_output.json
|       |-- images
|       `-- annotations
|-- |-- MPII
|   `-- |-- images
|       `-- annotations
|-- |-- MSCOCO
|   `-- |-- images
|       |   |-- train/
|       |   |-- val/
|       `-- annotations
|-- |-- MuCo
|   `-- |-- data
|       |   |-- augmented_set
|       |   |-- unaugmented_set
|       |   `-- MuCo-3DHP.json
`-- |-- MuPoTS
|   `-- |-- bbox
|       |   |-- bbox_mupots_output.json
|       |-- data
|       |   |-- MultiPersonTestSet
|       |   `-- MuPoTS-3D.json

Output

You need to follow the directory structure of the output folder as below.

${POSE_ROOT}
|-- output
|-- |-- log
|-- |-- model_dump
|-- |-- result
`-- |-- vis
  • Creating output folder as soft link form is recommended instead of folder form because it would take large storage capacity.
  • log folder contains training log file.
  • model_dump folder contains saved checkpoints for each epoch.
  • result folder contains final estimation files generated in the testing stage.
  • vis folder contains visualized results.

Running 3DMPPE_ROOTNET

Start

  • In the main/config.py, you can change settings of the model including dataset to use, network backbone, and input size and so on.

Train

In the main folder, run

python train.py --gpu 0-1

to train the network on the GPU 0,1.

If you want to continue experiment, run

python train.py --gpu 0-1 --continue

--gpu 0,1 can be used instead of --gpu 0-1.

Test

Place trained model at the output/model_dump/.

In the main folder, run

python test.py --gpu 0-1 --test_epoch 20

to test the network on the GPU 0,1 with 20th epoch trained model. --gpu 0,1 can be used instead of --gpu 0-1.

Results

Here I report the performance of the RootNet. Also, I provide bounding box estimations and trained models of the RootNet.

For the evaluation, you can run test.py or there are evaluation codes in Human36M and MuPoTS.

Human3.6M dataset using protocol 2

Method MRPE MRPE_x MRPE_y MRPE_z
RootNet 120.0 23.3 23.0 108.1

MuPoTS-3D dataset

Method AP_25
RootNet 31.0
  • Bounding box [MuPoTS-3D]
  • Bounding box + 3D Human root coordinatees in camera space [MuPoTS-3D]
  • RootNet model trained on MuCo-3DHP + MSCOCO [model]

MSCOCO dataset

We additionally provide estimated 3D human root coordinates in on the MSCOCO dataset. The coordinates are in 3D camera coordinate system, and focal lengths are set to 1500mm for both x and y axis. You can change focal length and corresponding distance using equation 2 or equation in supplementarial material of my paper

  • Bounding box + 3D Human root coordinates in camera space [MSCOCO]

Reference

@InProceedings{Moon_2019_ICCV_3DMPPE,
author = {Moon, Gyeongsik and Chang, Juyong and Lee, Kyoung Mu},
title = {Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image},
booktitle = {The IEEE Conference on International Conference on Computer Vision (ICCV)},
year = {2019}
}