/DGMR-pytorch

An implementation of Deep Generative Model of Radars from DeepMind in PyTorch

Primary LanguagePython

DGMR-pytorch

An implementation of Deep Generative Model of Radars from DeepMind in PyTorch

Dependencies

  • dask==2022.9.1
  • matplotlib==3.5.1
  • numba==0.55.1
  • numpy==1.21.0
  • pandas==1.4.1
  • properscoring==0.1
  • pytorch-lightning==1.5.10
  • torchvision==0.11.3
  • pytorch

Execute pip install -r requirements.txt to install required packages (except for torch).

For installing torch, please check out https://pytorch.org/get-started/locally/ to figure out the version that works on your device.

Workflow

image

Data preparation

  • Step 1: Read your own data.
  • Step 2: Store your data into numpy.ndarray with proper data type (e.g. int16, float64).
  • Step 3: Make sure your data are sorted by time.
  • Step 4: Note the array's storing data type and data shape, these information will be needed in config file.
  • Step 5: Save the array with the format .dat or .npy. (No headers please!)

For more information, please check out numpy's documentation.

How to run DGMR?

  • Step 1: Prepare data (see Data Preparation).
  • Step 2: Prepare rain records .csv file. (optional) If rain records are not prepared, it will be calculated automatically in our program. Example of csv:
index nonzeros
0 number of nonzeros of image 0
1 number of nonzeros of image 1
... number of nonzeros of images
N-1 number of nonzeros of image N-1
  • Step 3: Prepare config file. Please see configs/README.md

  • Step 4: Execute the code

    • train: python3 main.py -c /path/to/your/config -m train
    • validate: python3 main.py -c /path/to/your/config -m val
    • test: python3 main.py -c /path/to/your/config -m test

Tensorboard

Execute this command to see training results. tensorboard --logdir /path/where/records/are/stored