/Study_CUDA_Programming

Primary LanguageC++GNU Affero General Public License v3.0AGPL-3.0

Study_CUDA_Programming (based on C++ ver11)

  • All materials in this repository are based on lectures and code from Inflean's CUDA course.
  • The link of the course is as follows:
  • All lecture materials and codes follow the instructor's license and are only for educational purposes for the course attended.
  • Commercial use is prohibited !!

Must prepare as follows:

  • Nvidia GPU
  • OS: Ubuntu 20.04 (for me), Windows 10 over., Mac
  • Install CUDA (for me, v12.1)
  • Pure python Env (Not conda Env)
    • If you want to set python3 for main python module, please set.
sudo apt update
sudo apt install python3.8
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.8 10
sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.8 10 # If don't use python3, no need it
sudo update-alternatives --config python3 # If don't use python3, no need it

Install glfw3 packages

sudo apt-get install libglfw3-dev libglfw3

Install cmake 3.30

sudo apt purge cmake
sudo apt install wget build-essential

wget https://github.com/Kitware/CMake/releases/download/v3.30.0/cmake-3.30.0.tar.gz
tar -xvzf cmake-3.30.0.tar.gz
cd cmake-3.30.0
./bootstrap --prefix=/usr/local
make
sudo make install
cmake --version
  • If you don't find cmake version, please edit as follows:
vi ~./bashrc

PATH=/usr/local/bin:$PATH:$HOME/bin

source ~./bashrc

Download CUDA Samples (for me, v12.1)

wget https://github.com/NVIDIA/cuda-samples/archive/refs/tags/v12.1.tar.gz
tar -zxvf v12.1.tar.gz
wget https://github.com/NVIDIA/cuda-samples/archive/refs/tags/v12.1.zip
unzip v12.1.zip
make
sudo make install

CUDA for Ubuntu

  • $ ubuntu-drivers devices
  • $ sudo apt install nvidia-driver-xx
    • reboot !
  • $ nvidia-smi (only for checking your NVIDIA driver)
    • visit CUDA-zone to get the CUDA toolkit
  • $ sudo apt get install build-essential (to get GCC compilers)
  • $ nvcc -V (now you should get the NVIDIA CUDA Compiler messages)

CUDA Tutorial

  • in each section, build the project as shown below and run the generated file.
mkdir build
cd build
cmake ..
make
./generated_execution_file

This tutorial is structured as follows:

1. part1_cuda_kernel: Start CUDA programming | Certificate

  • print hello cuda (on Ubuntu)
  • memory copy
  • add vector by using cpu or CUDA
  • error check

2. part2_vector_addition: Study CUDA kernel launch | Certificate

  • elapsed time
  • CUDA kernel launch
  • 1d vector addition
  • Giga vector addition
  • AXPY and FMA
    • single precision
    • linear interpolation
  • thread and GPU

3. part3_memory_structure: Memory Structure | Certificate

  • 메모리 계층 구조
  • CUDA 전용의 2D 메모리 할당 함수, pitched point 사용법
  • 3D 행렬 사용 및 pitched point 사용법
  • CUDA 메모리 계층 구조
  • 인접 원소끼리 차이 구하기: shared memory 활용

4. part4_matrix_multiply: Matrix Multiply | Certificate

  • matrix copy
  • Matrix Transpose 전치 행렬
  • Matrix Multiplication
  • GEMM: general matrix-to-matrix multiplication
  • 메모리에 따른 CUDA 변수 스피드 측정
  • 정밀도와 속도개선

5. part5_atommic_operation: Atomic Operation | Certificate

  • Control Flow
    • if 문 과 for loop 문 어떻게 최적화 할것인지?
    • shared 메모리를 사용하는 경우라면, half-by-half를 사용하는 even-odd 보다 조금더 빠르다.!!
  • race conditions 문제의 해결방법으로 Atomic Operation 사용
  • atomic operation 사용하여 histogram 구하기
  • Reduction Problem 솔루션
  • GEMV operation

6. part6_search_sort: Search & Sort | Certificate

  • Linear Search 선형 탐색
  • Search All 모든 위치 모두 찾기
    • CUDA에서 stride 사용하는 것이 제일 빠르다.
  • Binary Search 이진 탐색
    • CUDA 사용해서, binary search는 효과적이지 못하다.
    • 그냥 CPU 사용하세요!. 특히 STL 짱짱 빠름.
  • CUDA 에서 Sort 하는 방법.. 본격적으로 얘기해 보자!!
    • 블럭 단위 parallel sorting
      • CUDA even-odd sort: 엄청 빨라 짐
    • global 메모리 활용 parallel sort 할때는,
      • CUDA (even-odd) 에서 도차도 상당히 느리다.
  • Bitonic Sort 바이토닉 소트
    • 병렬 처리를 위한, 소팅 방법이라고 보면 됨
  • Counting Merge Sort 카운팅 방식 머지 소트 (병합 정렬)
    • 병렬 처리에 가장 적합한 Large Scale Parallel Counting Merge Sort 방법

Additional Comments

  • All description in the materials have been modified by myself, Hyunkoo Kim.
  • (c) 2024. hyunkookim.me@gmail.com. All rights reserved.