Implementation of MobileNetV2 with pyTorch, adapted from MobileNetV2-PyTorch and pytorch-mobilenet-v2.
You can find the paper of MobileNetV2 at Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segment.
This project uses Python 3.7.3 and PyTorch 1.0.1.
The ImageNet dataset is used in this project and is put as follows (Copied from miraclewkf/MobileNetV2-PyTorch where you can find the files ILSVRC2012_img_train
and ILSVRC2012_img_val
).
├── train.py # train script
├── MobileNetV2.py # network of MobileNetV2
├── read_ImageNetData.py
├── ImageData
├── ILSVRC2012_img_train
├── n01440764
├── ...
├── n15075141
├── ILSVRC2012_img_val
├── ILSVRC2012_dev_kit_t12
├── data
├── ILSVRC2012_validation_ground_truth.txt
├── meta.mat
- Train from scratch:
CUDA_VISIBLE_DEVICES=0,1 python train.py --batch-size 128
- Train from one checkpoint(for example, train from
epoch_200.pth
, the--start-epoch
parameter is corresponding to the epoch of the checkpoint):
CUDA_VISIBLE_DEVICES=2,3 python train.py --batch-size 256 --resume /media/data2/chenjiarong/MobileNetV2/output/epoch_200.pth --start-epoch 200 --num-epochs 300
In pretrained
, achieving an accuracy of 71.62%.
- number of epochs: 400
- learning rate schedule: learning rate decay rate of 0.98 per epoch, initial lr=0.045
- weight decay: 4e-5
- remove dropout
- batch size: 256
- optimizer: SGD
Madds | Parameters | Top1-acc | |
---|---|---|---|
Offical 1.0 | 300 M | 3.4 M | 72.0% |
Ours 1.0 (Madds&Parameters calculated by thop) | 328.78 M | 3.5 M | 71.62% |
Ours 1.0 (Madds&Parameters calculated by torchsummaryX) | 300.79 M | 3.5 M | 71.62% |