- CPU / Intel Xeon Platinum 8360Y x 2
- GPU / NVIDIA A100 SXM4 x 1
- Memory / 512GiB
- NVMe SSD / Intel SSD DC P4510 2.0TB x 2
- Interconnect / InfiniBand HDR x 4
CentOS v7.5
prepare: create jpg images https://www.kaggle.com/yujiariyasu/siim-covid19-convert-to-jpg-1536px?scriptVersionId=71593635
- set train folder to yuji_siim/input/ The images are placed like this.. yuji_siim/input/train/xxx.jpg
- set train_with_size.csv folder to yuji_siim/input/ create train.csv https://www.kaggle.com/yujiariyasu/create-train-csv?scriptVersionId=71593668
- set train_for_classification.csv and train_for_detection.csv to yuji_siim/input create segmentation mask https://www.kaggle.com/yujiariyasu/lungfield-segmentation-and-crop?scriptVersionId=71453959
- set mask_train folder to yuji_siim/input/ The segmentation masks are placed like this.. yuji_siim/input/mask_train/xxx.jpg detection:
cd yuji_siim
python yolo_train_one_fold.py -c mixup05_l6 --fold 0
python yolo_train_one_fold.py -c mixup05_l6 --fold 1
python yolo_train_one_fold.py -c mixup05_l6 --fold 2
python yolo_train_one_fold.py -c mixup05_l6 --fold 3
python yolo_train_one_fold.py -c mixup05_l6 --fold 4
python yolo_train_one_fold.py -c mixup05_l --fold 0
python yolo_train_one_fold.py -c mixup05_l --fold 1
python yolo_train_one_fold.py -c mixup05_l --fold 2
python yolo_train_one_fold.py -c mixup05_l --fold 3
python yolo_train_one_fold.py -c mixup05_l --fold 4
wbf:
python wbf.py
classification:
python train_one_fold.py -c model0changelr --fold 0
python train_one_fold.py -c model0changelr --fold 1
python train_one_fold.py -c model0changelr --fold 2
python train_one_fold.py -c model0changelr --fold 3
python train_one_fold.py -c model0changelr --fold 4
python train_one_fold.py -c swinmixupchangelr --fold 0
python train_one_fold.py -c swinmixupchangelr --fold 1
python train_one_fold.py -c swinmixupchangelr --fold 2
python train_one_fold.py -c swinmixupchangelr --fold 3
python train_one_fold.py -c swinmixupchangelr --fold 4
cd ..
Register the two models we created for detection and two models for classification into the kaggle dataset, and register Ian's models. And run the kernel for inference. https://www.kaggle.com/yujiariyasu/fork-of-siim-covid-19-full-pipeline-v2?scriptVersionId=71599585
- CPU / Intel Xeon Gold 6242 @ 2.80GHz
- GPU / NVIDIA Quadro RTX 6000 24 GB x4
- RAM / 64 GB
RedHat v7.7
cd ian-siim/ ; bash setup.sh ; cd mmdetection ; pip install -r requirements.txt ; pip install . -v -e
Download the RSNA Pneumonia Detection Challenge dataset from Kaggle. Place it in data/rsna18/
. There should now be a folder named data/rsna18/stage_2_train_images/
.
Download the SIIM-FISABIO-RSNA COVID-19 Detection dataset from Kaggle. place it in data/covid/
.
cd ian-siim/etl
python 01_convert_covid_dicoms_to_pngs.py
cd ian-siim/classify
python main.py train configs/mks/mk030.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm
python main.py train configs/mks/mk032.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm
cd ian-siim/detect
python main.py train configs/rsna/rsna002.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm
cd ian-siim/mmdetection
bash tools/dist_train.sh configs/swin/swin_rsna002.py 4
cd ian-siim/classify
python main.py train configs/seg/seg019.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 0
python main.py train configs/seg/seg019.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 1
python main.py train configs/seg/seg019.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 2
python main.py train configs/seg/seg019.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 3
python main.py train configs/seg/seg019.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 4
python main.py train configs/seg/seg032.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 0
python main.py train configs/seg/seg032.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 1
python main.py train configs/seg/seg032.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 2
python main.py train configs/seg/seg032.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 3
python main.py train configs/seg/seg032.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 4
cd ian-siim/detect
python main.py train configs/mks/mk004.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 0
python main.py train configs/mks/mk004.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 1
python main.py train configs/mks/mk004.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 2
python main.py train configs/mks/mk004.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 3
python main.py train configs/mks/mk004.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 4
python main.py train configs/mks/mk007.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 0
python main.py train configs/mks/mk007.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 1
python main.py train configs/mks/mk007.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 2
python main.py train configs/mks/mk007.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 3
python main.py train configs/mks/mk007.yaml --num-workers 4 \
--gpus 4 --num_nodes 1 --accelerator ddp --precision 16 \
--benchmark --sync_batchnorm --kfold 4
cd ian-siim/mmdetection
bash tools/dist_train.sh configs/swin/swin004.py 4 --kfold 0
bash tools/dist_train.sh configs/swin/swin004.py 4 --kfold 1
bash tools/dist_train.sh configs/swin/swin004.py 4 --kfold 2
bash tools/dist_train.sh configs/swin/swin004.py 4 --kfold 3
bash tools/dist_train.sh configs/swin/swin004.py 4 --kfold 4
See above.