- GPU with 11Gb memory is necessary
- 64Gb RAM memory at least
- 120Gb free space is required (ssd type partition is recommended)
git clone git@github.com:i7p9h9/myna-lab-task.git
- cd mina-lab-task/
- prepare docker environment:
./local/prepare_for_docker.sh
- edit
path.sh
- DATASETS_DIR - path to folder with trainig data, next structure expected:
. ├── test-example ├── test-example.csv ├── train.csv └── train
- PROCESSED_DIR - empty folder where processed dataset and augmentation will be saved, ssd partition type highly recommended
- RESULT_DIR - folder where weights for neural network will be saved
- start training script:
./train.sh -j X
where 'X' is num cpu threads, 6-12 cores recomended
- wait... :)
- result will be saved in
RESULT_DIR/final.torch
andRESULT_DIR/final-half.torch
- run:
./eval.sh -s csv_result_file -m path_to_model_file -d path_to_folder_with_wav
for instance:
./eval.sh -s result.csv -m exps/exp1/final-half.torch -d /media/ssd/myna-labs/numbers2/test-example/
- For supervised training process validation on 500 labeled files showed CER: 0.0040
- For fixmatch (semi-supervised) training process validation on 500 labeled files showed CER: 0.0017