/Physics

Java library for Newtonian Mechanics Modeling with a focus on Immutable Fluency

Primary LanguageJavaMIT LicenseMIT

Classical Mechanics

Computation and Modeling of Newtonian Physics in Java 8 with Functionality and Null-Safety in mind.

Immutable, Functional Scalars

Floating-point quantities without direction.

Scalar s = () -> 5.0;
s.getMagnitude(); // 5.0

Computation

Scalars have basic arithmetic functions already built in that are pure.

Scalar s1 = () -> 12.0;
Scalar s2 = () -> 5.0;

Scalar add = s1.add(s2) // Magnitude: 17
Scalar sub = s1.subtract(s2); // Magnitude: 7

Scalar mul = s1.multiply(s2); // Magnitude: 60
Scalar mul2 = s1.multiply(10.0); // Magnitude: 120

Scalar div = s1.divide(s2); // Magnitude: 12.0 / 7.0 ≈ 1.7143
Scalar div2 = s1.divide(10.0); // Magnitude: 1.2

s1.getMagnitude(); // Still 12
s2.getMagnitude(); // Still 5

Immutable Angles

A scalar quantity that inherits the above properties.

Supports

  • Standard Units (Degrees, Radians, Gradians, Turns)
  • Conversions between Units
  • Quadrant determination
  • Trigonometric Functions
// Instantiation
Angle a = new Angle(30, AngleUnit.DEGREES);
Angle b = new Angle(5 * Math.PI / 6, AngleUnit.RADIANS);

a.getQuadrant(); // I
b.getQuadrant(); // II

a.sin(); // 0.5
a.cos(); // ~0.866
a.tan(); // ~0.577

a.csc(); // 2.0
a.sec(); // ~1.1547
a.cot(); // ~1.732

Angle add = a.add(b); // 180°
Angle sub = b.subtract(a); // 2π/3 rad
Angle mul = a.multiply(2.0); // 60°

// Conversions
Angle aGrads = a.convert(AngleUnit.GRADIANS);
double turns = a.getTurns();

// Comparisons
boolean smaller = a.compareTo(b) < 0; // true

Note that these functions are pure in that they do not mutate the angle but rather return a new values.

Immutable Vectors

Quantities with magnitude and direction.

// Empty Vector Initialization
Vector a = new Vector();

// Can initialize Vectors with their magnitude and angle
Vector b = new Vector(5.0, 25.0, AngleUnit.DEGREES);
Vector c = new Vector(5.0, new Angle(Math.PI, AngleUnit.RADIANS));

// Can initialize Vectors with their components
Vector d = new Vector(1.0, 2.0);
Vector e = new Vector(1.0, 2.0, 3.0);

// Can initialize Vectors with double arrays or lists
Vector f = new Vector(Arrays.asList(4.0, 5.0, 6.0));
Vector g = new Vector(new double[] {7.0, 8.0, 9.0});

Computation

Componentization

List<Double> aComps = a.getComponents(); // []
List<Double> bComps = b.getComponents(); // [4.5315, 2.1131]

Note that these Lists are actually instances of UnmodifiableList so that Vectors are immutable.

Addition / Subtraction

Vector add = b.add(c);
Vector sub = c.subtract(d);

Multiplication / Division

Vector mul = e.multiply(2.0);
Vector mul2 = f.multiply(() -> 10.0);

Vector div = f.divide(2.0);
Vector div2 = f.divide(() -> 10.0);

double dot = f.dotProduct(g);
Vector cross = f.crossProduct3D(g);

Angular Difference

Angle angDiff = f.angularDiff(g);
double degDiff = f.degreeDiff(g);

Linear Interpolation

Vector lerp = f.interpolate(g, 0.50);

Normalization

// Creates a unit vector with the same direction
Vector unit = g.normalized();

Comparison

boolean larger = g.compareTo(f) > 0; // true

Note that these functions are pure in that they do not mutate the vector but rather return a new values.

Chaining Calls

These immutable values also provide a fluent interface for method chaining.

Angle a = new Angle(1125, AngleUnit.DEGREES)
        .simplified()
        .subtract(new Angle(15, AngleUnit.DEGREES))
        .multiply(2.0);

// a → 60°
Vector v = new Vector(2.5, 5.0, 7.5)
        .add(new Vector(4.5, 6.0, 2.5))
        .divide(5.0)
        .crossProduct3D(new Vector(1.0, 2.0, 3.0));

// v → components=[2.6, -2.2, 0.6], magnitude=3.4583, angle=41.253°