A Simple PointPillars PyTorch Implenmentation for 3D Lidar(KITTI) Detection. [Zhihu]
- It can be run without installing Spconv, mmdet or mmdet3d.
- Only one detection network (PointPillars) was implemented in this repo, so the code may be more easy to read.
- Sincere thanks for the great open-souce architectures mmcv, mmdet and mmdet3d, which helps me to learn 3D detetion and implement this repo.
Repo | Metric | Overall | Pedestrian | Cyclist | Car |
---|---|---|---|---|---|
this repo | 3D-BBox | 73.3259 62.7834 59.6278 | 51.4642 47.9446 43.8040 | 81.8677 63.6617 60.9126 | 86.6456 76.7439 74.1668 |
mmdet3d v0.18.1 | 3D-BBox | 72.0537, 60.1114, 55.8320 | 52.0263, 46.4037, 42.4841 | 78.7231, 59.9526, 57.2489 | 85.4118, 73.9780, 67.7630 |
this repo | BEV | 77.8540 69.8003 66.6699 | 59.1687 54.3456 50.5023 | 84.4268 67.1409 63.7409 | 89.9664 87.9145 85.7664 |
mmdet3d v0.18.1 | BEV | 76.6485, 67.7609, 64.5605 | 59.0778, 53.3638, 48.4230 | 80.9328, 63.3447, 60.0618 | 89.9348, 86.5743, 85.1967 |
this repo | 2D-BBox | 80.5097 74.6120 71.4758 | 64.6249 61.4201 57.5965 | 86.2569 73.0828 70.1726 | 90.6471 89.3330 86.6583 |
mmdet3d v0.18.1 | 2D-BBox | 78.4938, 73.4781, 70.3613 | 62.2413, 58.9157, 55.3660 | 82.6460, 72.3547, 68.4669 | 90.5939, 89.1638, 87.2511 |
this repo | AOS | 74.9647 68.1712 65.2817 | 49.3777 46.7284 43.8352 | 85.0412 69.1024 66.2801 | 90.4752 88.6828 85.7298 |
mmdet3d v0.18.1 | AOS | 72.41, 66.23, 63.55 | 46.00, 43.22, 40.94 | 80.85, 67.20, 63.63 | 90.37, 88.27, 86.07 |
- Note: Here, we report mmdet3d v0.18.1 (2022/02/09-2022/03/01) performance based on the officially provided checkpoint. Much improvements were made in the mmdet3d v1.0.0rc1.
-
Download
Download point cloud(29GB), images(12 GB), calibration files(16 MB)和labels(5 MB)。Format the datasets as follows:
kitti |- training |- calib (#7481 .txt) |- image_2 (#7481 .png) |- label_2 (#7481 .txt) |- velodyne (#7481 .bin) |- testing |- calib (#7518 .txt) |- image_2 (#7518 .png) |- velodyne (#7418 .bin)
-
Pre-process KITTI datasets First
cd PointPillars/ python pre_process_kitti.py --data_root your_path_to_kitti
Now, we have datasets as follows:
kitti |- training |- calib (#7481 .txt) |- image_2 (#7481 .png) |- label_2 (#7481 .txt) |- velodyne (#7481 .bin) |- velodyne_reduced (#7481 .bin) |- testing |- calib (#7518 .txt) |- image_2 (#7518 .png) |- velodyne (#7518 .bin) |- velodyne_reduced (#7518 .bin) |- kitti_gt_database (# 19700 .bin) |- kitti_infos_train.pkl |- kitti_infos_val.pkl |- kitti_infos_trainval.pkl |- kitti_infos_test.pkl |- kitti_dbinfos_train.pkl
cd ops
python setup.py develop
cd PointPillars/
python train.py --data_root your_path_to_kitti
cd PointPillars/
python evaluate.py --ckpt pretrained/epoch_160.pth --data_root your_path_to_kitti
cd PointPillars/
# 1. infer and visualize point cloud detection
python test.py --ckpt pretrained/epoch_160.pth --pc_path your_pc_path
# 2. infer and visualize point cloud detection and gound truth.
python test.py --ckpt pretrained/epoch_160.pth --pc_path your_pc_path --calib_path your_calib_path
# 3. infer and visualize point cloud & image detection
python test.py --ckpt pretrained/epoch_160.pth --pc_path your_pc_path --calib_path your_calib_path --img_path your_img_path
e.g. [infer on val set 000134]
python test.py --ckpt pretrained/epoch_160.pth --pc_path /home/lifa/data/KITTI/training/velodyne_reduced/000134.bin
or
python test.py --ckpt pretrained/epoch_160.pth --pc_path /home/lifa/data/KITTI/training/velodyne_reduced/000134.bin --calib_path /home/lifa/data/KITTI/training/calib/000134.txt --img_path /home/lifa/data/KITTI/training/image_2/000134.png --gt_path /home/lifa/data/KITTI/training/label_2/000134.txt