A single-producer, single-consumer lock-free queue for C++
This mini-repository has my very own implementation of a lock-free queue (that I designed from scratch) for C++.
It only supports a two-thread use case (one consuming, and one producing). The threads can't switch roles, though you could use this queue completely from a single thread if you wish (but that would sort of defeat the purpose!).
Features
- Blazing fast
- Compatible with C++11 (supports moving objects instead of making copies)
- Fully generic (templated container of any type) -- just like
std::queue
, you never need to allocate memory for elements yourself (which saves you the hassle of writing a lock-free memory manager to hold the elements you're queueing) - Allocates memory up front, in contiguous blocks
- Provides a
try_enqueue
method which is guaranteed never to allocate memory (the queue starts with an initial capacity) - Also provides an
enqueue
method which can dynamically grow the size of the queue as needed - Completely "wait-free" (no compare-and-swap loop). Enqueue and dequeue are always O(1) (not counting memory allocation)
- On x86, the memory barriers compile down to no-ops, meaning enqueue and dequeue are just a simple series of loads and stores (and branches)
Use
Simply drop the readerwriterqueue.h and atomicops.h files into your source code and include them :-) A modern compiler is required (MSVC2010+, GCC 4.7+, ICC 13+, or any C++11 compliant compiler should work).
Example:
using namespace moodycamel;
ReaderWriterQueue<int> q(100); // Reserve space for at least 100 elements up front
q.enqueue(17); // Will allocate memory if the queue is full
bool succeeded = q.try_enqueue(18); // Will only succeed if the queue has an empty slot (never allocates)
assert(succeeded);
int number;
succeeded = q.try_dequeue(number); // Returns false if the queue was empty
assert(succeeded && number == 17);
Disclaimers
The queue should only be used on platforms where aligned integer and pointer access is atomic; fortunately, that includes all modern processors (e.g. x86/x86-64, ARM, and PowerPC). Not for use with a DEC Alpha processor (which has very weak memory ordering) :-)
Note that it's only been tested on x86(-64); if someone has access to other processors I'd love to run some tests on anything that's not x86-based.
Finally, I am not an expert. This is my first foray into lock-free programming, and though I'm confident in the code, it's possible that there are bugs despite the effort I put into designing and testing this data structure.
Use this code at your own risk; in particular, lock-free programming is a patent minefield, and this code may very well violate a pending patent (I haven't looked). It's worth noting that I came up with this algorithm and implementation from scratch, independent of any existing lock-free queues.
More info
See the LICENSE.md file for the license (simplified BSD).
My blog post introduces the context that led to this code, and may be of interest if you're curious about lock-free programming.