Urban 100 from "Single Image Super-Resolution from Transformed Self-Exemplars"
PDF: https://ieeexplore.ieee.org/document/7299156
"Image Super-Resolution Using Deep Convolutional Networks"
PDF: https://ieeexplore.ieee.org/abstract/document/7115171/
"Accelerating the super-resolution convolutional neuralnetwork"
PDF: http://arxiv.org/abs/1608.00367
"Photo-realistic single image super-resolution using a generative adversarial network"
PDF: http://arxiv.org/abs/1609.04802
Inspired by
"Learned image downscaling for upscaling using content adaptive resampler"
PDF: https://arxiv.org/pdf/1907.12904.pdf
SRCNN
python run.py --bicubic 1
FSRCNN
python run.py --model FSRCNN --bicubic 1
python run.py --model FSRCNN --bicubic 0
SRResNet
python run.py --model SRResNet --bicubic 1
python run.py --model SRResNet --bicubic 0
CAR-variant
python run.py --model car --bicubic 1
python run.py --model car --bicubic 0
where bicubic = 1 indicates using the interpolated dataset and bicubic = 0 indicates using the original Urban100 dataset.