πΈ Coqui TTS is a library for advanced Text-to-Speech generation.
π Pretrained models in +1100 languages.
π οΈ Tools for training new models and fine-tuning existing models in any language.
π Utilities for dataset analysis and curation.
- Fork of the original, unmaintained repository. New PyPI package: coqui-tts
- 0.25.0: OpenVoice models now available for voice conversion.
- 0.24.2: Prebuilt wheels are now also published for Mac and Windows (in addition to Linux as before) for easier installation across platforms.
- 0.20.0: XTTSv2 is here with 17 languages and better performance across the board. XTTS can stream with <200ms latency.
- 0.19.0: XTTS fine-tuning code is out. Check the example recipes.
- 0.14.1: You can use Fairseq models in ~1100 languages with πΈTTS.
Please use our dedicated channels for questions and discussion. Help is much more valuable if it's shared publicly so that more people can benefit from it.
Type | Platforms |
---|---|
π¨ Bug Reports, Feature Requests & Ideas | GitHub Issue Tracker |
π©βπ» Usage Questions | GitHub Discussions |
π― General Discussion | GitHub Discussions or Discord |
The issues and discussions in the original repository are also still a useful source of information.
Type | Links |
---|---|
πΌ Documentation | ReadTheDocs |
πΎ Installation | TTS/README.md |
π©βπ» Contributing | CONTRIBUTING.md |
π Released Models | Standard models and Fairseq models in ~1100 languages |
- High-performance text-to-speech and voice conversion models, see list below.
- Fast and efficient model training with detailed training logs on the terminal and Tensorboard.
- Support for multi-speaker and multilingual TTS.
- Released and ready-to-use models.
- Tools to curate TTS datasets under
dataset_analysis/
. - Command line and Python APIs to use and test your models.
- Modular (but not too much) code base enabling easy implementation of new ideas.
- Tacotron, Tacotron2
- Glow-TTS, SC-GlowTTS
- Speedy-Speech
- Align-TTS
- FastPitch
- FastSpeech, FastSpeech2
- Capacitron
- OverFlow
- Neural HMM TTS
- Delightful TTS
- Attention methods: Guided Attention, Forward Backward Decoding, Graves Attention, Double Decoder Consistency, Dynamic Convolutional Attention, Alignment Network
- Speaker encoders: GE2E, Angular Loss
You can also help us implement more models.
πΈTTS is tested on Ubuntu 24.04 with python >= 3.9, < 3.13, but should also work on Mac and Windows.
If you are only interested in synthesizing speech with the pretrained πΈTTS models, installing from PyPI is the easiest option.
pip install coqui-tts
If you plan to code or train models, clone πΈTTS and install it locally.
git clone https://github.com/idiap/coqui-ai-TTS
cd coqui-ai-TTS
pip install -e .
The following extras allow the installation of optional dependencies:
Name | Description |
---|---|
all |
All optional dependencies |
notebooks |
Dependencies only used in notebooks |
server |
Dependencies to run the TTS server |
bn |
Bangla G2P |
ja |
Japanese G2P |
ko |
Korean G2P |
zh |
Chinese G2P |
languages |
All language-specific dependencies |
You can install extras with one of the following commands:
pip install coqui-tts[server,ja]
pip install -e .[server,ja]
If you are on Ubuntu (Debian), you can also run the following commands for installation.
make system-deps
make install
You can also try out Coqui TTS without installation with the docker image. Simply run the following command and you will be able to run TTS:
docker run --rm -it -p 5002:5002 --entrypoint /bin/bash ghcr.io/idiap/coqui-tts-cpu
python3 TTS/server/server.py --list_models #To get the list of available models
python3 TTS/server/server.py --model_name tts_models/en/vctk/vits # To start a server
You can then enjoy the TTS server here More details about the docker images (like GPU support) can be found here
import torch
from TTS.api import TTS
# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"
# List available πΈTTS models
print(TTS().list_models())
# Initialize TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
# List speakers
print(tts.speakers)
# Run TTS
# β XTTS supports both, but many models allow only one of the `speaker` and
# `speaker_wav` arguments
# TTS with list of amplitude values as output, clone the voice from `speaker_wav`
wav = tts.tts(
text="Hello world!",
speaker_wav="my/cloning/audio.wav",
language="en"
)
# TTS to a file, use a preset speaker
tts.tts_to_file(
text="Hello world!",
speaker="Craig Gutsy",
language="en",
file_path="output.wav"
)
# Initialize TTS with the target model name
tts = TTS("tts_models/de/thorsten/tacotron2-DDC").to(device)
# Run TTS
tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path=OUTPUT_PATH)
Converting the voice in source_wav
to the voice of target_wav
tts = TTS("voice_conversion_models/multilingual/vctk/freevc24").to("cuda")
tts.voice_conversion_to_file(
source_wav="my/source.wav",
target_wav="my/target.wav",
file_path="output.wav"
)
Other available voice conversion models:
voice_conversion_models/multilingual/multi-dataset/openvoice_v1
voice_conversion_models/multilingual/multi-dataset/openvoice_v2
This way, you can clone voices by using any model in πΈTTS. The FreeVC model is used for voice conversion after synthesizing speech.
tts = TTS("tts_models/de/thorsten/tacotron2-DDC")
tts.tts_with_vc_to_file(
"Wie sage ich auf Italienisch, dass ich dich liebe?",
speaker_wav="target/speaker.wav",
file_path="output.wav"
)
For Fairseq models, use the following name format: tts_models/<lang-iso_code>/fairseq/vits
.
You can find the language ISO codes here
and learn about the Fairseq models here.
# TTS with fairseq models
api = TTS("tts_models/deu/fairseq/vits")
api.tts_to_file(
"Wie sage ich auf Italienisch, dass ich dich liebe?",
file_path="output.wav"
)
Synthesize speech on the command line.
You can either use your trained model or choose a model from the provided list.
-
List provided models:
tts --list_models
-
Get model information. Use the names obtained from
--list_models
.tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
For example:
tts --model_info_by_name tts_models/tr/common-voice/glow-tts tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2
-
Run TTS with the default model (
tts_models/en/ljspeech/tacotron2-DDC
):tts --text "Text for TTS" --out_path output/path/speech.wav
-
Run TTS and pipe out the generated TTS wav file data:
tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay
-
Run a TTS model with its default vocoder model:
tts --text "Text for TTS" \ --model_name "<model_type>/<language>/<dataset>/<model_name>" \ --out_path output/path/speech.wav
For example:
tts --text "Text for TTS" \ --model_name "tts_models/en/ljspeech/glow-tts" \ --out_path output/path/speech.wav
-
Run with specific TTS and vocoder models from the list. Note that not every vocoder is compatible with every TTS model.
tts --text "Text for TTS" \ --model_name "<model_type>/<language>/<dataset>/<model_name>" \ --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" \ --out_path output/path/speech.wav
For example:
tts --text "Text for TTS" \ --model_name "tts_models/en/ljspeech/glow-tts" \ --vocoder_name "vocoder_models/en/ljspeech/univnet" \ --out_path output/path/speech.wav
-
Run your own TTS model (using Griffin-Lim Vocoder):
tts --text "Text for TTS" \ --model_path path/to/model.pth \ --config_path path/to/config.json \ --out_path output/path/speech.wav
-
Run your own TTS and Vocoder models:
tts --text "Text for TTS" \ --model_path path/to/model.pth \ --config_path path/to/config.json \ --out_path output/path/speech.wav \ --vocoder_path path/to/vocoder.pth \ --vocoder_config_path path/to/vocoder_config.json
-
List the available speakers and choose a
<speaker_id>
among them:tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs
-
Run the multi-speaker TTS model with the target speaker ID:
tts --text "Text for TTS." --out_path output/path/speech.wav \ --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id>
-
Run your own multi-speaker TTS model:
tts --text "Text for TTS" --out_path output/path/speech.wav \ --model_path path/to/model.pth --config_path path/to/config.json \ --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" \
--source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>