How to do `entropy_forward` for CSP network?
1chimaruGin opened this issue · 2 comments
1chimaruGin commented
My block look like this.
BottleneckCSP(
(cv1): Conv(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(cv2): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(cv4): Conv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(cv2): Conv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
)
(1): Bottleneck(
(cv1): Conv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
(cv2): Conv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): Mish()
)
)
)
)
forward(self, x)
def forward(self, x):
d = self.m(self.cv1(x))
y1 = self.cv3(d)
y2 = self.cv2(x)
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
MingLin-home commented
I think you can simply call
ZenNAS/ZeroShotProxy/compute_zen_score.py
Line 33 in d1d617e
The zen-score will be saved in info['avg_nas_score']
1chimaruGin commented
Sorry @MingLin-home, I opened issue on wrong Repo. I'm asking for Lightning NAS (MAE-DET).
By the way, thanks for the kind response.