/ADEPT-Dataset-Release

This is the dataset generation code for ADEPT (Approximate Derenderer, Extended Physics, and Tracking). http://physadept.csail.mit.edu/

Primary LanguagePython

ADEPT-Dataset-Release

This is the dataset generation code for ADEPT (Approximate Derenderer, Extended Physics, and Tracking).

Modeling Expectation Violation in Intuitive Physics with Coarse Probabilistic Object Representations

Kevin Smith*, Lingjie Mei*, Shunyu Yao, Jiajun Wu, Elizabeth S. Spelke, Joshua B. Tenenbaum, Tomer Ullman (* indicates equal contribution)

Preprint

Paper BibTeX Website

For the model, see ADEPT-Model-Release

Prerequisites

  • Linux
  • Python3
  • Blender as a python module
  • Other modules required specified in requirements.txt

Getting started

  1. Clone this directory

    git clone https://github.com/JerryLingjieMei/ADEPT-Dataset-Release
    cd ADEPT-Dataset-Release

    And replace CONTENT_FOLDER in utils.constants and phys_sim/data/builder/collect_obj.sh with the absolute path to your directory.

  2. Create a conda environment for ADEPT Dataset Generation, and install the requirements.

    conda create --n adept-dataset
    conda activate adept-dataset
    pip install -r requirements.txt

For installation of Blender as a python module, see Blender wiki.

You may also try using Blender's bundled python, by replacing `python *.py --arg1 --value1` with `blender -b --python -- --arg1 --value1`
  1. (Optional) If you have multiple machines, you may change get_host_id in utils/misc.py to reflect the id of your machine. With that in hand, you may speed up all following processes by using --stride N arguments, where you have N machines with consecutive ids.

  2. To render ShapeNet objects, please download ShapeNet Core V2 from its official website. Change SHAPE_NET_FOLDER in phys_sim/data/builder/collect_obj.sh to the path of ShapeNet meshes, and run thar script.

    To turn them into .blend files, run

    # Single machine
    python3 render/data/builder/collect_blend.py #Map phase
    python3 render/data/builder/collect_blend.py --reduce #Reduce phase
    # Multiple (e.g. 8) machines
    python3 render/data/builder/collect_blend.py --stride 8 #On each machine
    python3 render/data/builder/collect_blend.py --reduce --stride 8 #On a single machine

Dataset generation

  1. Generate training set (e.g. with 1000 videos) by running

    # Single machine
    python3 dataset/generate_train.py --end 1000
    # Multiple (e.g. 8) machines
    python3 dataset/generate_train.py --end 1000 --stride 8 #On each machine
  2. Generate human test set by running

    # Single machine
    python3 dataset/human/generate_human.py --end 1000
    # Multiple (e.g. 8) machines
    python3 dataset/human/generate_human.py --end 1000 --stride 8 #On each machine

Evaluation

  1. Evaluating the relative accuracy on human test set. If you have a experiment output folder that contains .txt files containing the scores of all human test cases, run
    python3 dataset/human/collect_reuslts.py --summary_folder ${SUMMARY_FOLDER} #Score in SUMMARY_FOLDER/results
    python3 dataset/human/collect_reuslts.py --summary_folder ${SUMMARY_FOLDER} --output_folder ${OUTPUT_FOLDER} #Custom output folder
    Or you may get the relative accuracy from a json file that contains a dictionary mapping case name to its score:
    python3 dataset/human/collect_results.py --summary_file ${SUMMARY_FILE} --output_folder ${OUTPUT_FOLDER} #Custom output folder