Rep_AdamBNN

This is the pytorch implementation of our paper "RepBNN: towards a precise Binary Neural Network with Enhanced Feature Map via Repeating".

Run

1. Requirements:

  • python3, pytorch 1.7.1, torchvision 0.8.2

2. Data:

  • Download ImageNet dataset

3. Steps to run:

(1) Step1: binarizing activations

  • Change directory to ./step1/
  • run bash run.sh

(2) Step2: binarizing weights + activations

  • Change directory to ./step2/
  • run bash run.sh

Models

Methods Backbone Top1-Acc FLOPs Trained Model
ReActNet ReActNet-A 69.4% 0.87 x 10^8 Model-ReAct
AdamBNN ReActNet-A 70.5% 0.87 x 10^8 Model-ReAct-AdamBNN-Training
Rep_AdamBNN ReActNet-A 71.34% 0.88 x 10^8 Model-Rep-ReAct-AdamBNN-Training

Acknowlegement

We sincerely thank the authors of AdamBNN for open sourcing their methods.