This is the pytorch implementation of our paper "RepBNN: towards a precise Binary Neural Network with Enhanced Feature Map via Repeating".
- python3, pytorch 1.7.1, torchvision 0.8.2
- Download ImageNet dataset
(1) Step1: binarizing activations
- Change directory to
./step1/
- run
bash run.sh
(2) Step2: binarizing weights + activations
- Change directory to
./step2/
- run
bash run.sh
Methods | Backbone | Top1-Acc | FLOPs | Trained Model |
---|---|---|---|---|
ReActNet | ReActNet-A | 69.4% | 0.87 x 10^8 | Model-ReAct |
AdamBNN | ReActNet-A | 70.5% | 0.87 x 10^8 | Model-ReAct-AdamBNN-Training |
Rep_AdamBNN | ReActNet-A | 71.34% | 0.88 x 10^8 | Model-Rep-ReAct-AdamBNN-Training |
We sincerely thank the authors of AdamBNN for open sourcing their methods.