Convert competitions/matches/lineups/events JSON data released by StatsBomb into easy-to-use CSV format.
A simple web interface for this package can be found here.
$ pip install statsbomb
- Parsing the
competitions.json
file:
import statsbomb as sb
comps = sb.Competitions()
print(len(comps)) # 3
json_data = comps.data # underlying json data
df = comps.get_dataframe()
print(df)
competition_id | competition_name | country_name | match_available | match_updated | season_id | season_name |
---|---|---|---|---|---|---|
37 | FA Women's Super League | England | 2018-09-08T07:33:39.356340 | 2018-09-08T07:33:39.356340 | 1 | 2017/2018 |
43 | FIFA World Cup | International | 2018-09-08T07:33:39.356340 | 2018-09-08T14:30:04.356514 | 3 | 2018 |
49 | NWSL | United States of America | 2018-09-08T07:33:39.356340 | 2018-09-08T07:33:39.356340 | 3 | 2018 |
- Parsing a matches json file:
import statsbomb as sb
matches = sb.Matches(event_id='11', season_id='37')
df = matches.get_dataframe()
print(len(df)) # 7
- Parsing an events json file to extract shots:
import statsbomb as sb
events = sb.Events(event_id='8658')
df = events.get_dataframe(event_type='shot')
print(len(df)) # 23
print(df)
event_type | id | index | period | timestamp | minute | second | possession | possession_team | play_pattern | off_camera | team | player | position | duration | under_pressure | statsbomb_xg | key_pass_id | body_part | type | outcome | technique | first_time | follows_dribble | redirect | one_on_one | open_goal | deflected | start_location_x | start_location_y | end_location_x | end_location_y | end_location_z |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
shot | c3ffbb5f-d836-4d33-a02a-3a994990d253 | 577 | 1 | 00:20:51.227 | 20 | 51 | 39 | Croatia | From Free Kick | False | Croatia | Domagoj Vida | Left Center Back | 1.013 | 0.05478843 | baafd0a9-1031-46df-82a2-16538d6e94cf | Head | Open Play | Off T | Normal | 112.0 | 49.0 | 119.0 | 36.7 | 4.7 | |||||||
shot | d7a727de-1b60-47c7-b9fa-10948bb730ed | 634 | 1 | 00:23:34.907 | 23 | 34 | 45 | Croatia | From Free Kick | False | Croatia | Ivan Rakitić | Left Center Midfield | 2.053 | 0.04375982 | 9cc48e31-5a52-4074-97b1-5c3eafdd753d | Left Foot | Open Play | Off T | Volley | 108.0 | 29.0 | 120.0 | 46.9 | 6.1 | |||||||
shot | 20bcdb94-9507-4bed-8315-edddcbb84081 | 736 | 1 | 00:27:53.880 | 27 | 53 | 53 | Croatia | From Free Kick | False | Croatia | Ivan Perišić | Left Wing | 0.587 | 0.12172278 | 90fdf286-3e32-4646-bcb1-a83a7d51593f | Left Foot | Open Play | Goal | Half Volley | True | True | 105.0 | 32.0 | 120.0 | 43.3 | 0.7 | |||||
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
- Save data to CSV:
import statsbomb as sb
events = sb.Events(event_id='8658')
events.save_data(event_type='shot') # outputs a file named events_8658_shot.csv
Clone the repo:
git clone https://github.com/imrankhan17/statsbomb-parser.git
cd statsbomb-parser
Create a virtual environment:
python -m venv env
source env/bin/activate
pip install -r requirements.txt
Or use Docker:
docker build -t statsbomb-parser .
To run the CI pipeline locally, execute the commands in the script
part of the .travis.yml
files. Or using Docker:
docker run -it --rm -v $(pwd):/home -w /home statsbomb-parser python -m pycodestyle --max-line-length=119 statsbomb tests *.py
docker run -it --rm -v $(pwd):/home -w /home statsbomb-parser python -m pylint statsbomb tests *.py
docker run -it --rm -v $(pwd):/home -w /home statsbomb-parser python -m pytest --disable-pytest-warnings --cov=statsbomb --cov-report=html --durations=5 tests/