Fast and simple implementation of the Dreamer agent in TensorFlow 2.
If you find this code useful, please reference in your paper:
@article{hafner2019dreamer,
title={Dream to Control: Learning Behaviors by Latent Imagination},
author={Hafner, Danijar and Lillicrap, Timothy and Ba, Jimmy and Norouzi, Mohammad},
journal={arXiv preprint arXiv:1912.01603},
year={2019}
}
Dreamer learns a world model that predicts ahead in a compact feature space. From imagined feature sequences, it learns a policy and state-value function. The value gradients are backpropagated through the multi-step predictions to efficiently learn a long-horizon policy.
- Project website
- Research paper
- Official implementation (TensorFlow 1)
Get dependencies:
pip3 install --user tensorflow-gpu==2.1.0
pip3 install --user tensorflow_probability
pip3 install --user git+git://github.com/deepmind/dm_control.git
pip3 install --user pandas
pip3 install --user matplotlib
Train the agent:
python3 dreamer.py --logdir ./logdir/dmc_walker_walk/dreamer/1 --task dmc_walker_walk
Generate plots:
python3 plotting.py --indir ./logdir --outdir ./plots --xaxis step --yaxis test/return --bins 3e4
Graphs and GIFs:
tensorboard --logdir ./logdir
python3 -m tensorboard.main --logdir=./logdir