/gremlin

[2018] GRammar-based Evolutionary Machine LearnINg

Primary LanguageJava

Epochx-Weka

Anotações

  • Os parâmetros de um classificador selecionado por outro são antecedidos por --
  • Os parâmetros e o nome de um algoritmo que não é classificador vem dentro de " "
  • Parece que uma variável chamada "validProductions" é negativa em certo momento
  • Warning no valor alto do pruning, por quê?

Melhorias que podem ser adicionadas:

  • Espécies
  • Fitness Sharing
  • Co-evolução (cooperativa ou competitiva?)
  • Opção de selecionar dataset pra treino e teste

Algoritmos e parâmetros

  • Parâmetros

    • Geral
      • batchSize (-batch-size)
      • debug (-output-debug-info)
      • doNotCheckCapabilities (-do-not-check-capabilities)
      • numDecimalPlaces (-num-decimal-places)
      • outputOutOfBagComplexityStatistics (-output-out-of-bag-complexity-statistics)
      • numExecutionSlots (-num-slots)
      • printClassifiers (-print)
      • representCopiesUsingWeights (-represent-copies-using-weights)
      • storeOutOfBagPredictions (-store-out-of-bag-predictions)
      • doNotPrintModels (-do-not-print)
      • computeAttributeImportance (-attribute-importance)
      • doNotMakeSplitPointActualValue (-doNotMakeSplitPointActualValue)
  • Algoritmos

    • Attribute Selection
      • Eval
        • CfsSubsetEval
          • locallyPredictive (-L)
            • (true, false; false)
          • missingSeparate (-M)
            • (true, false; false)
          • numThreads (-E)
          • poolSize (-P)
          • preComputeCorrelationMatrix (-Z)
      • Search
        • BestFirst
          • direction (-D)
            • (0, 1, 2; 1)
          • lookupCacheSize (-?)
          • searchTerminatior (-N)
            • ([2, 10]; 5) inteiro
          • startSet (-P)
        • GreedyStepwise
          • conservativeForwardSelection (-C)
            • (true, false; false)
          • debuggingOutput (-D)
          • generateRanking (-R)
            • (true, false; false)
          • numToSelect (-N)
            • ([10, 1000]; 30) inteiro
          • searchBackwards (-B)
            • (true, false; false)
          • startSet (-P)
          • threshold (-T)
          • regras:
            • N se R false
    • Base
      • BayesNet
        • estimator (-E)
        • searchAlgorithm (-Q)
          • (K2, HillClimber, LAGDHillClimber, SimulatedAnnealing, TabuSearch, TAN; K2)
        • useADTree (-D)
          • (true, false; false)
      • NaiveBayes
        • displayModelInOldFormat (-O)
        • useKernelEstimator (-K)
          • (true, false; false)
        • useSupervisedDiscretization (-D)
          • (true, false; false)
        • regras:
          • K se D false
      • NaiveBayesMultinomial
      • Logistic
        • maxIts (-M)
        • ridge (-R)
          • ([1e-12, 10]; 1e-7)
        • useConjugateGradientDescent (-C)
      • MultilayerPerceptron
        • GUI (-G)
        • autoBuild (-?)
        • decay (-D)
          • (true, false; false)
        • hiddenLayers (-H)
          • (a, i, o, t; a)
        • learningRate (-L)
          • ([0.1, 1]; 0.3)
        • momentum (-M)
          • ([0.1, 1]; 0.2)
        • nominalToBinaryFilter (-B)
          • (true, false; false)
        • normalizeAttributes (-I)
        • normalizeNumericClass (-C)
          • (true, false; false)
        • reset (-R)
          • (true, false; false)
        • seed (-S)
          • (1; 1)
        • trainingTime (-N)
        • validationSetSize (-V)
        • validationThreshold (-E)
      • SGD
        • dontNormalize (-N)
          • (true, false; false)
        • dontReplaceMissing (-M)
          • (true, false; false)
        • epochs (-E)
        • epsilon (-C)
        • lambda (-R)
          • ([1e-12, 10]; 1e-4)
        • learningRate (-L)
          • ([0.00001, 0.1]; 0.01)
        • lossFunction (-F)
          • (0, 1, 2; 0)
        • seed (-S)
      • SimpleLogistic
        • errorOnProbabilities (-P)
        • heuristicStop (-H)
        • maxBoostingIterations (-M)
        • numBoostingIterations (-I)
        • useAIC (-A)
          • (true, false; false)
        • useCrossValidation (-S)
          • (true, false; false)
        • weightTrimBeta (-W)
          • W_HIDDEN (0, 1; 0)
            • 1_W (0; 0)
            • 2_W ([0, 1]; 0)
        • regras:
          • 1_W se W_HIDDEN 0
          • 2_W se W_HIDDEN 1
      • SMO
        • buildCalibrationModels (-M)
        • c (-C)
          • ([0.5, 1.5]; 1)
        • calibrator (-calibrator)
        • checksTurnedOff (-no-checks)
        • epsilon (-P)
        • filterType (-N)
          • (0, 1, 2; 0)
        • kernel (-K)
          • (NormalizedPolyKernel, PolyKernel, Puk, RBFKernel; NormalizedPolyKernel)
          • NormalizedPolyKernel
            • exponent (-E)
              • ([0.2, 5]; 1)
            • useLowerOrder (-L)
              • (true, false; false)
          • PolyKernel
            • exponent (-E)
              • ([0.2, 5]; 1)
            • useLowerOrder (-L)
              • (true, false; false)
          • Puk
            • omega (-O)
              • ([0.1, 1]; 1)
            • sigma (-S)
              • ([0.1, 10]; 1)
          • RBFKernel
            • gamma (-G)
              • ([0.0001, 1]; 0.01)
        • numFolds (-V)
        • randomSeed (-W)
        • toleranceParameter (-L)
        • regras:
          • parâmetros próprios de cada algoritmo dependendo do valor de K
      • VotedPerceptron
        • exponent (-E)
          • ([0.2, 5]; 1)
        • maxK (-M)
          • ([5000, 50000]; 10000) inteiro
        • numIterations (-I)
          • ([1, 10]; 1) inteiro
        • seed (-S)
      • IBk
        • KNN (-K)
          • ([1, 64]; 1) inteiro
        • crossValidate (-X)
          • (true, false; false)
        • distanceWeighting (-I/-F)
          • (true, false; false)
        • meanSquare (-E)
          • (true, false; false)
        • nearestNeightbourSearchAlgorithm (-A)
        • windowSize (-W)
        • regras:
          • F se I false
      • KStar
        • entropicAutoBlend (-E)
          • (true, false; false)
        • globalBlend (-B)
          • ([1, 100]; 20) inteiro
        • missingMode (-M)
          • (a, d, m, n; a)
      • DecisionTable
        • crossVal (-X)
          • (1, 2, 3, 4; 1)
        • evaluationMeasure (-E)
          • (acc, rmse, mae, aux; acc)
        • search (-S)
          • (BestFirst, GreedyStepwise; BestFirst)
        • useIBk (-I)
          • (true, false; false)
      • JRip
        • checkErrorRate (-E)
          • (true, false; false)
        • folds (-F)
        • minNo (-N)
          • ([1, 5]; 2)
        • optimizations (-O)
          • ([1, 5]; 2) inteiro
        • seed (-S)
        • usePruning (-P)
          • (true, false; false)
      • OneR
        • minBucketSize (-B)
          • ([1, 32]; 6) inteiro
      • PART
        • binarySplits (-B)
          • (true, false; false)
        • confidenceFactor (-C)
        • minNumObj (-M)
          • ([1, 64]; 2) inteiro
        • numFolds (-N)
          • ([2, 5]; 3) inteiro
        • reducedErrorPruning (-R)
          • (true, false; false)
        • seed (-Q)
        • unpruned (-U)
        • useMDLcorrection (-J)
        • regras:
          • N se R true
      • ZeroR
      • DecisionStump
      • J48
        • binarySplits (-B)
          • (true, false; false)
        • collapseTree (-O)
          • (true, false; false)
        • confidenceFactor (-C)
          • C_HIDDEN ([0, 1]; 0.25)
            • C ([0, 1]; 0.25)
        • minNumObj (-M)
          • ([1, 64]; 2) inteiro
        • numFolds (-N)
        • reducedErrorPruning (-R)
        • saveInstanceData (-L)
        • seed (-?)
        • subtreeRaising (-S)
          • (true, false; false)
        • unpruned (-U)
          • (true, false; false)
        • useLaplace (-A)
          • (true, false; false)
        • useMDLcorrection (-J)
          • (true, false; false)
        • regras:
          • U se S false
          • U se C_HIDDEN 0
          • C se C_HIDDEN 1
      • LMT
        • convertNominal (-B)
          • (true, false; false)
        • errorOnProbabilities (-P)
          • (true, false; false)
        • fastRegression (-C)
          • (true, false; false)
        • minNumInstances (-M)
          • ([1, 64]; 15) inteiro
        • numBoostingIterations (-I)
        • splitOnResiduals (-R)
          • (true, false; false)
        • useAIC (-A)
          • (true, false; false)
        • weightTrimBeta (-W)
          • W_HIDDEN (0, 1; 0)
            • 1_W (0; 0)
            • 2_W ([0, 1]; 0)
        • regras:
          • 1_W se W_HIDDEN 0
          • 2_W se W_HIDDEN 1
      • RandomForest
        • bagSizePercent (-P)
        • breakTiesRandomly (-B)
        • calcOutOfBag (-O)
        • maxDepth (-depth)
          • depth_HIDDEN (0, 1; 0)
            • 1_INT_depth (0; 0)
            • 2_INT_depth ([1, 20]; 2) inteiro
        • numFeatures (-K)
          • features_HIDDEN (0, 1; 0)
            • 1_INT_K(0; 0)
            • 2_INT_K ([1, 32]; 2) inteiro
        • numIterations (-I)
          • ([2, 256]; 10)
        • seed (-S)
        • regras:
          • 1_INT_K se features_HIDDEN 0
          • 2_INT_K se features_HIDDEN 1
          • 1_INT_depth se depth_HIDDEN 0
          • 2_INT_depth se depth_HIDDEN 1
      • RandomTree
        • KValue (-K)
          • features_HIDDEN (0, 1; 0)
            • 1_INT_K (0; 0)
            • 2_INT_K ([2, 32]; 2) inteiro
        • allowUnclassifiedInstances (-U)
          • (true, false; false)
        • breakTiesRandomly (-B)
        • maxDepth (-depth)
          • depth_HIDDEN (0, 1; 0)
            • 1_INT_depth (0; 0)
            • 2_INT_depth ([2, 20]; 2) inteiro
        • minNum (-M)
          • ([1, 64]; 1) inteiro
        • minVarianceDrop (-V)
        • numFolds (-N)
          • back_HIDDEN (0, 1; 0)
            • 1_INT_N (0; 0)
            • 2_INT_N ([2, 5]; 3) inteiro
        • seed (-S)
        • regras:
          • 1_INT_K se features_HIDDEN 0
          • 2_INT_K se features_HIDDEN 1
          • 1_INT_depth se depth_HIDDEN 0
          • 2_INT_depth se depth_HIDDEN 1
          • 1_INT_N se back_HIDDEN 0
          • 2_INT_N se back_HIDDEN 1
      • REPTree
        • initialCount (-I)
        • maxDepth (-L)
          • depth_HIDDEN (0, 1; 0)
            • 1_INT_L (-1; -1)
            • 2_INT_L ([2, 20]; 2)
        • minNum (-M)
          • ([1, 64]; 2) inteiro
        • minVarianceDrop (-V)
          • ([1e-5, 1e-1]; 1e-3)
        • noPruning (-P)
          • (true, false; false)
        • numFolds (-N)
        • seed (-S)
        • spreadInitialCount (-R)
        • regras:
          • 1_INT_L se depth_HIDDEN 0
          • 2_INT_L se depth_HIDDEN 1
    • Ensemble
      • Stacking
        • classifiers (-B)
        • metaClassifier (-M)
        • numFolds (-X)
          • (10; 10)
        • seed (-S)
          • (1; 1)
      • Vote
        • classifiers (-B)
        • combinationRule (-R)
          • (AVG, PROD, MAJ, MIN, MAX; AVG)
        • preBuiltClassifiers (-P)
        • seed (-S)
          • (1; 1)
    • Meta
      • LWL
        • KNN (-K)
          • K_HIDDEN (0, 1; 0)
            • 1_K (-1, 10, 30, 60, 90, 120; -1)
        • classifier (-W)
        • nearestNeighbourSearchAlgorithm (-A)
          • (LinearNNSearch; LinearNNSearch)
        • weightingKernel (-U)
          • U_HIDDEN (0, 1; 0)
            • 1_U (0, 1, 2, 3, 4; 0)
        • regras:
          • 1_K se K_HIDDEN 1
          • 1_U se K_HIDDEN 0
          • 1_U se U_HIDDEN 1
          • 1_K se U_HIDDEN 0
      • AdaBoostM1
        • classifier (-W)
        • numIterations (-I)
          • ([2, 128]; 10) inteiro
        • seed (-S)
          • (1; 1)
        • useResampling (-Q)
          • (true, false; false)
        • weightThreshold (-P)
          • p_HIDDEN (0, 1; 0)
            • 1_P (100; 100)
            • 2_INT_P ([50, 100]; 100)
          • regras:
            • 1_P se p_HIDDEN 0
            • 2_INT_P se p_HIDDEN 1
      • AttributeSelectedClassifier
        • classifier (-W)
        • evaluator (-E)
          • (CfsSubsetEval; CfsSubsetEval)
        • search (-S)
          • (BestFirst, GreedyStepwise; BestFirst)
      • Bagging
        • bagSizePercent (-P)
          • ([10, 100]; 100) inteiro
        • calcOutOfBag (-O)
          • (true, false; false)
        • classifier (-W)
        • numIterations (-I)
          • ([2, 128]; 10) inteiro
        • seed (-1)
          • (1; 1)
        • regras:
          • O se INT_P 100
      • RandomComittee
        • classifier (-W)
        • numIterations (-I)
          • ([2, 64]; 10) inteiro
        • seed (-S)
          • (1; 1)
      • RandomSubSpace
        • classifier (-W)
        • numIterations (-I)
          • ([2, 64]; 10) inteiro
        • seed (-S)
          • (1; 1)
        • subSpaceSize (-P)
          • ([0.1, 1]; 0.5)