/inference-client

Primary LanguagePythonMIT LicenseMIT

inference-client

👋 hello

Examples of image and video inference via http client for roboflow/inference.

💻 install client environment

# clone repository and navigate to root directory
git clone https://github.com/SkalskiP/inference-client.git
cd inference-client

# setup python environment and activate it
python3 -m venv venv
source venv/bin/activate

# headless install
pip install -r requirements.txt

🐋 docker

You can learn more about Roboflow Inference Docker Image build, pull and run in our documentation.

  • Run on x86 CPU:

    docker run --net=host roboflow/roboflow-inference-server-cpu:latest
  • Run on Nvidia GPU:

    docker run --network=host --gpus=all roboflow/roboflow-inference-server-gpu:latest
👉 more docker run options
  • Run on arm64 CPU:

    docker run -p 9001:9001 roboflow/roboflow-inference-server-arm-cpu:latest
  • Run on Nvidia GPU with TensorRT Runtime:

    docker run --network=host --gpus=all roboflow/roboflow-inference-server-trt:latest
  • Run on Nvidia Jetson with JetPack 4.x:

    docker run --privileged --net=host --runtime=nvidia roboflow/roboflow-inference-server-trt-jetson:latest
  • Run on Nvidia Jetson with JetPack 5.x:

    docker run --privileged --net=host --runtime=nvidia roboflow/roboflow-inference-server-trt-jetson-5.1.1:latest

🔑 keys

Before running the inference script, ensure that the API_KEY is set as an environment variable. This key provides access to the inference API.

  • For Unix/Linux:

    export API_KEY=your_api_key_here
  • For Windows:

    set API_KEY=your_api_key_here

Replace your_api_key_here with your actual API key.

📷 image inference example

To run the image inference script:

python image.py \
--image_path data/a9f16c_8_9.png \
--class_list "ball" "goalkeeper" "player" "referee" \
--dataset_id "football-players-detection-3zvbc" \
--version_id 2 \
--confidence 0.5

🎬 video inference example

To run the video inference script:

python video.py \
--video_path "data/40cd38_5.mp4" \
--class_list "ball" "goalkeeper" "player" "referee" \
--dataset_id "football-players-detection-3zvbc" \
--version_id 2 \
--confidence 0.5