/TT-model

A logical relations model of a minimal type theory with universes mechanized in Agda.

Primary LanguageAgda

Mechanization of consistency

This is a mechanization of a minimal type theory with universes, based on @yiyunliu's mltt-consistency proof written in Rocq. It has been checked with Agda 2.6.4.3 using agda-stdlib 2.0. The top-level file can be checked by agda consistency.agda.

Type Theory

The object theory is a type theory with universes à la Russell, dependent functions, an empty type, equality types, and untyped conversion. The below is an overview of the typing and conversion rules with variable names, although the mechanization uses de Bruijn indexing.

                Γ ⊢ B : 𝒰 k
x : A ∈ Γ    Γ ⊢ a : A    A ≈ B       ⊢ Γ    j < k
---------    ------------------    -------------------
Γ ⊢ x : A        Γ ⊢ a : B         Γ ⊢ 𝒰 j : Γ ⊢ 𝒰 k

    Γ ⊢ A : 𝒰 k            Γ ⊢ Πx : A. B           Γ ⊢ b : Πx: A. B
Γ, x : A ⊢ B : 𝒰 k        Γ, x : A ⊢ b : B            Γ ⊢ a : A
--------------------    ----------------------    -------------------
Γ ⊢ Πx : A. B : 𝒰 k     Γ ⊢ λx. b : Πx : A. B     Γ ⊢ b a : B{x ↦ a}

    ⊢ Γ         Γ ⊢ A : 𝒰 k    Γ ⊢ b : ⊥
------------    -------------------------
Γ ⊢ ⊥ : 𝒰 k          Γ ⊢ abs b : A
                                                           Γ ⊢ p : eq A a b
     Γ ⊢ A : 𝒰 k                                  Γ, y : A, q : eq A a y ⊢ B : 𝒰 k
Γ ⊢ a : A    Γ ⊢ b : A         Γ ⊢ a : A              Γ ⊢ d : B{y ↦ a, q ↦ refl}
----------------------    --------------------    ----------------------------------
  Γ ⊢ eq A a b : 𝒰 k      Γ ⊢ refl : eq A a a        Γ ⊢ J d p : B{y ↦ b, q ↦ p}

--------------------    ------------    + reflexivity,  symmetry,
(λx. b) a ≈ b{x ↦ a}    J d refl ≈ d      transitivity, congruence

Logical Relation

The semantic model of the type theory is a logical relation split into an inductive and a recursive part: the inductive part defines the interpretation of universes, while the recursive part defines the interpretation of types. Both are parametrized over a universe level, an accessibility proof of that level, and an abstract interpretation of universe for all lower levels. The top-level interpretations at a given accessible level is defined by well-founded induction using the parametrized interpretations. Below is a simplified sketch of the logical relation, omitting these accessibility details. There is also an inductive–recursive interpretation of contexts as predicates on substitutions, but its conceptual meaning is given below informally.

j < k               A ⇒ B    ⟦B⟧ₖ
------    -----    --------------
⟦𝒰 j⟧ₖ    ⟦⊥⟧ₖ          ⟦A⟧ₖ

 ⟦A⟧ₖ    ∀a ∈ ⟦A⟧ₖ. ⟦B{x ↦ a}⟧ₖ
-------------------------------
         ⟦Πx : A. B⟧ₖ

⟦A⟧ₖ    a ∈ ⟦A⟧ₖ    b ∈ ⟦A⟧ₖ
----------------------------
        ⟦eq A a b⟧ₖ

A ∈ ⟦𝒰 j⟧ₖ       = ⟦A⟧ⱼ
b ∉ ⟦⊥⟧ₖ
f ∈ ⟦Πx : A. B⟧ₖ = ∀a ∈ ⟦A⟧ₖ. f a ∈ ⟦B{x ↦ a}⟧ₖ
p ∈ ⟦eq A a b⟧ₖ  = p ⇒⋆ refl ∧ a ⇔ b
x ∈ ⟦A⟧ₖ         = x ∈ ⟦B⟧ₖ    (where A ⇒ B)

σ ∈ ⟦Γ⟧ = x : A ∈ Γ → σ(x) ∈ ⟦A{σ}⟧ₖ

Axioms

The only axiom used is function extensionality, which is located in the ext module of accessibility.agda as private postulates (one for an implicit and one for an explicit domain). Function extensionality is used to prove two extensional principles:

  • mere propositionality of the accessibility predicate, which is used to prove accU≡ in semantics.agda; and
  • congruence of dependent function types, which is needed to prove cumulativity of the logical relation in semantics.agda.

Contents

Most of the modules are parametrized over an abstract Level and its strict transitive order with all strict upper bounds, only to be instantiated at the very end by the naturals.

  • common.agda: Reëxports all the necessary agda-stdlib modules, and defines common definitions.
  • accessibility.agda: The accessibility predicate and its mere propositionality.
  • syntactics.agda: Syntax, substitution, contexts, and context membership.
  • reduction.agda: Parallel reduction, substitution lemmas, confluence, and conversion.
  • typing.agda: Definitional equality, context well-formedness, and well-typedness.
  • semantics.agda: Logical relations stating semantic typing and semantic context formation, along with important properties.
  • soundness.agda: The fundamental theorem of soundness of typing — syntactic well-typedness implies semantic well-typedness.
  • consistency.agda: Strict order on the naturals, well-foundedness of the naturals with respect to its strict order, and logical consistency using the naturals as levels.

Statistics

$ cloc --include-lang=Agda --exclude-content=model --by-file .

github.com/AlDanial/cloc v 1.98  T=0.02 s (506.7 files/s, 92854.9 lines/s)
----------------------------------------------------------------------------------
File                                blank        comment           code
----------------------------------------------------------------------------------
./reduction.agda                       62             14            328
./syntactics.agda                      49             22            239
./semantics.agda                       49             24            234
./typing.agda                          13             26            135
./soundness.agda                        4              0            110
./consistency.agda                     25              4             75
./accessibility.agda                    9              0             26
./common.agda                           3              0             15
----------------------------------------------------------------------------------
SUM:                                  214             90           1162
----------------------------------------------------------------------------------