IRremote Arduino Library
Available as Arduino library "IRremote"
Version 2.8.2 - work in progress
This library enables you to send and receive using infra-red signals on an Arduino.
Tutorials and more information will be made available on the official homepage.
Installation
Click on the LibraryManager badge above to see the instructions.
Supported IR Protocols
Aiwa, BoseWave, Denon, Dish, JVC, Lego, LG, MagiQuest, NEC, Panasonic, RC5, RC6, Samsung, Sanyo, Sharp, Sony, Whynter, (Pronto).
Protocols can be switched off and on by changing the lines in IRremote.h:
#define DECODE_<PROTOCOL_NAME> 1
#define SEND_<PROTOCOL_NAME> 1
Wiki
This is a quite old but maybe useful wiki for this library.
FAQ
- IR does not work right when I use Neopixels (aka WS2811/WS2812/WS2812B)
Whether you use the Adafruit Neopixel lib, or FastLED, interrupts get disabled on many lower end CPUs like the basic Arduinos for longer than 50 µs. In turn, this stops the IR interrupt handler from running when it needs to. There are some solutions to this on some processors, see this page from Marc MERLIN - The default IR timer on AVR's is timer 2. Since the Arduino Tone library as well as analogWrite() for pin 3 and pin 11 requires timer 2, this functionality cannot be used simultaneously.
- You can use multiple IR receiver by just connecting the output pins of several IR receivers together. The IR receivers use an NPN transistor as output device with just a 30k resistor to VCC. This is almost "open collector" and allows connecting of several output pins to one Arduino input pin.
Handling unknown Protocols
Disclaimer
This library was never designed to handle long codes like the ones used by air conditioners.
See Recording long Infrared Remote control signals with Arduino.
The main reason is, that it was designed to fit inside MCUs with relatively low levels of resources and was intended to work as a library together with other applications which also require some resources of the MCU to operate.
Hints
If you do not know which protocol your IR transmitter uses, you have several choices.
- Use the IRreceiveDumpV2 example to dump out the IR timing. You can then reproduce/send this timing with the IRsendRawDemo example. For long codes with more than 48 bits like from air conditioners, you can change the length of the input buffer in IRremoteInt.h.
- The IRMP AllProtocol example prints the protocol and data for one of the 40 supported protocols. The same library can be used to send this codes.
- If you have a bigger Arduino board at hand (> 100 kByte program space) you can try the IRremoteDecode example of the Arduino library DecodeIR.
- Use IrScrutinizer. It can automatically generate a send sketch for your protocol by exporting as "Arduino Raw". It supports IRremote, the old IRLib and Infrared4Arduino.
- To increase strength of sent output signal you can increase the current through the send diode, or use 2 diodes in series,
since one IR diode requires only 1.5 volt. Changing
IR_SEND_DUTY_CYCLE
to 50 increases the signal current by 40%.
Compile options / macros for this library
To customize the library to different requirements, there are some compile options / macros available.
Modify it by commenting them out or in, or change the values if applicable. Or define the macro with the -D compiler option for global compile (the latter is not possible with the Arduino IDE, so consider to use Sloeber.
Name | File | Default value | Description |
---|---|---|---|
DEBUG |
IRremote.h | disabled | Enables lots of lovely debug output. |
USE_NEC_STANDARD |
IRremote.h | disabled | Use LSB first, address/code schema for encoding. |
USE_NO_SEND_PWM |
IRremote.h | disabled | Use no carrier PWM, just simulate an active low receiver signal. |
USE_SOFT_SEND_PWM |
IRremote.h | disabled | Use carrier PWM generation in software, instead of hardware PWM. |
PULSE_CORRECTION_MICROS |
IRremote.h | 3 | If USE_SOFT_SEND_PWM, this amount is subtracted from the on-time of the pulses. |
USE_SPIN_WAIT |
IRremote.h | disabled | If USE_SOFT_SEND_PWM, use spin wait instead of delayMicros(). |
RAW_BUFFER_LENGTH |
IRremoteint.h | 101 | Buffer size of raw input buffer. Must be odd! |
IR_SEND_DUTY_CYCLE |
IRremoteBoardDefs.h | 30 | Duty cycle of IR send signal. |
MICROS_PER_TICK |
IRremoteBoardDefs.h | 50 | Resolution of the raw input buffer data. |
Modifying library properties with Arduino IDE
First use Sketch/Show Sketch Folder (Ctrl+K).
If you did not yet stored the example as your own sketch, then you are instantly in the right library folder.
Otherwise you have to navigate to the parallel libraries
folder and select the library you want to access.
In both cases the library files itself are located in the src
directory.
Modifying library properties with Sloeber IDE
If you are using Sloeber as your IDE, you can easily define global symbols with Properties/Arduino/CompileOptions.
Other IR libraries
Here you find a short comparison matrix of 4 popular Arduino IR libraries.
Here you find an ESP8266/ESP32 version of IRremote with an impressive list of supported protocols.
Supported Boards
- Arduino Uno / Mega / Leonardo / Duemilanove / Diecimila / LilyPad / Mini / Fio / Nano etc.
- Teensy 1.0 / 1.0++ / 2.0 / 2++ / 3.0 / 3.1 / Teensy-LC; Credits: @PaulStoffregen (Teensy Team)
- Sanguino
- ATmega8, 48, 88, 168, 328
- ATmega8535, 16, 32, 164, 324, 644, 1284,
- ATmega64, 128
- ATmega4809 (Nano every)
- ATtiny84, 85
- SAMD21 (receive only)
- ESP32
- ESP8266 is supported in a fork based on an old codebase. It works well given that perfectly timed sub millisecond interrupts are different on that chip.
- Sparkfun Pro Micro
We are open to suggestions for adding support to new boards, however we highly recommend you contact your supplier first and ask them to provide support from their side.
Hardware specifications
The timer and the pin usage can be adjusted in IRremoteBoardDefs.h
Board/CPU | IR-Send (PWM) Pin | Timers |
---|---|---|
ATtiny84 | 6 | 1 |
ATtiny85 > 1 MHz | 1, 4 | 0, 1 |
ATmega8 | 9 | 1 |
ATmega48, ATmega88, ATmega168, ATmega328 | 3, 9 | 1, 2 |
ATmega1284 | 13, 14, 6 | 1, 2, 3 |
ATmega164, ATmega324, ATmega644 | 13, 14 | 1, 2 |
ATmega8535 ATmega16, ATmega32 | 13 | 1 |
ATmega64, ATmega128, ATmega1281, ATmega2561 | 13 | 1 |
ATmega8515, ATmega162 | 13 | 1 |
ATmega1280, ATmega2560 | 5, 6, 9, 11, 46 | 1, 2, 3, 4, 5 |
ATmega4809 | 5, 6, 9, 11, 46 | TCB0 |
Leonardo (Atmega32u4) | 5, 9, 13 | 1, 3, 4_HS |
Zero (SAMD) | *, 9 | TC3 |
ESP32 | 4, all pins | 1 |
Sparkfun Pro Micro | 5, 9 | 1, 3 |
Teensy 1.0 | 17 | 1 |
Teensy 2.0 | 9, 10, 14 | 1, 3, 4_HS |
Teensy++ 1.0 / 2.0 | 1, 16, 25 | 1, 2, 3 |
Teensy 3.0 / 3.1 | 5 | CMT |
Teensy-LC | 16 | TPM1 |
Revision History
Please see changelog.md.
API documentation
To generate the API documentation,
Doxygen, as well as Graphviz should be installed.
(Note that on Windows, it may be necessary to add the Graphviz binary directory
(something like C:\Program Files\Graphviz2.38\bin
)
to the PATH
variable manually.)
With Doxygen and Graphviz installed, issue the command
doxygen
from the command line in the main project directory, which will
generate the API documentation in HTML format.
The just generated api-doc/index.html
can now be opened in a browser.
Why do we use 33% duty cycle
We do it according to the statement in the Vishay datasheet:
- Carrier duty cycle 50 %, peak current of emitter IF = 200 mA, the resulting transmission distance is 25 m.
- Carrier duty cycle 10 %, peak current of emitter IF = 800 mA, the resulting transmission distance is 29 m. - Factor 1.16 The reason is, that it is not the pure energy of the fundamental which is responsible for the receiver to detect a signal. Due to automatic gain control and other bias effects high intensity and lower energy (duty cycle) of the 38 kHz pulse counts more than high low intensity and higher energy.
BTW, the best way to increase the IR power is to use 2 or 3 IR diodes in series. One diode requires 1.1 to 1.5 volt so you can supply 3 diodes with a 5 volt output.
To keep the current, you must reduce the resistor by (5 - 1.3) / (5 - 2.6) = 1.5 e.g. from 150 ohm to 100 ohm for 25 mA and 2 diodes with 1.3 volt and a 5 volt supply.
For 3 diodes it requires factor 2.5 e.g. from 150 ohm to 60 ohm.
Contributing
If you want to contribute to this project:
- Report bugs and errors
- Ask for enhancements
- Create issues and pull requests
- Tell other people about this library
- Contribute new protocols
Check here for some guidelines.
Contributors
Check here
Contact
Email: zetoslab@gmail.com Please only email me if it is more appropriate than creating an Issue / PR. I will not respond to requests for adding support for particular boards, unless of course you are the creator of the board and would like to cooperate on the project. I will also ignore any emails asking me to tell you how to implement your ideas. However, if you have a private inquiry that you would only apply to you and you would prefer it to be via email, by all means.
License
Up to the version 2.7.0 the License is GPLv2. From the version 2.8.0 the license is the MIT license.
Copyright
Initially coded 2009 Ken Shirriff http://www.righto.com Copyright (c) 2016 Rafi Khan Copyright (c) 2020 Armin Joachimsmeyer