This is a SAT solver library; underneath the hood it's using cgo and links against Google's Operations Research Tools. It exposes a high-level package for the CP-SAT Solver, targeting the v9.1 release.
Here's a simple example solving for free integer variables, ensuring that they're all different.
model := NewModel()
var numVals int64 = 3
x := model.NewIntVar(0, numVals-1, "x")
y := model.NewIntVar(0, numVals-1, "y")
z := model.NewIntVar(0, numVals-1, "z")
ct := NewAllDifferentConstraint(x, y, z)
model.AddConstraints(ct)
result := model.Solve()
require.True(t, result.Optimal(), "expected solver to find solution")
{
x := result.Value(x)
y := result.Value(y)
z := result.Value(z)
for _, value := range []int64{x, y, z} {
require.Truef(t, value >= 0 && value <= numVals-1,
"expected %d to be in domain [%d, %d]", value, 0, numVals-1)
}
require.Falsef(t, x == y || x == z || y == z,
"all different constraint violated, both x=%d y=%d z=%d", x, y, z)
}
Here's another solving with a few linear constraints and a maximization objective.
model := NewModel()
x := model.NewIntVar(0, 100, "x")
y := model.NewIntVar(0, 100, "y")
// Constraint 1: x + 2y <= 14.
ct1 := NewLinearConstraint(
NewLinearExpr([]IntVar{x, y}, []int64{1, 2}, 0),
NewDomain(math.MinInt64, 14),
)
// Constraint 2: 3x - y >= 0.
ct2 := NewLinearConstraint(
NewLinearExpr([]IntVar{x, y}, []int64{3, -1}, 0),
NewDomain(0, math.MaxInt64),
)
// Constraint 3: x - y <= 2.
ct3 := NewLinearConstraint(
NewLinearExpr([]IntVar{x, y}, []int64{1, -1}, 0),
NewDomain(0, 2),
)
model.AddConstraints(ct1, ct2, ct3)
// Objective function: 3x + 4y.
model.Maximize(NewLinearExpr([]IntVar{x, y}, []int64{3, 4}, 0))
result := model.Solve()
require.True(t, result.Optimal(), "expected solver to find solution")
{
x := result.Value(x)
y := result.Value(y)
require.Equal(t, int64(6), x)
require.Equal(t, int64(4), y)
require.Equal(t, float64(34), result.ObjectiveValue())
}
Finally, an example solving for arbitrary boolean constraints.
model := NewModel()
a := model.NewLiteral("a")
b := model.NewLiteral("b")
c := model.NewLiteral("c")
d := model.NewLiteral("d")
e := model.NewLiteral("e")
f := model.NewLiteral("f")
model.AddConstraints(
NewBooleanAndConstraint(a, b), // a && b
NewBooleanOrConstraint(c, d), // c || d
NewBooleanXorConstraint(e, f), // e != f
)
result := model.Solve()
require.True(t, result.Optimal(), "expected solver to find solution")
{
a := result.BooleanValue(a)
b := result.BooleanValue(b)
c := result.BooleanValue(c)
d := result.BooleanValue(d)
e := result.BooleanValue(e)
f := result.BooleanValue(f)
require.True(t, a && b)
require.True(t, c || d)
require.True(t, e != f)
}
For more, look through the package tests and the docs.
The Go/C++ binding code is generated using SWIG and can
be found under internal/
. SWIG generated code is ugly and difficult to work
with; a sanitized API is exposed via the top-level package.
Because of the C++ dependencies, the library is compiled/tested using Bazel. The top-level Makefile packages most things you'd need.
# ensure that the submodules are initialized:
# git submodule update --init --recursive
#
# supported bazel version >= 4.0.0
# supported swig version == 4.0.2
# supported protoc version == 3.14.0
# supported protoc-gen-go version == 1.27.1
$ make help
Supported commands: build, test, generate, rewrite
$ make generate
--- generating go:generate files
--- generating swig files
--- generating proto files
--- generating bazel files
ok
$ make build
ok
$ make test
...
INFO: Build completed successfully, 4 total actions
This library is tested using the (awesome)
datadriven library + a tiny
testing grammar. See testdata/
for what that looks like.
sat
model.name(ex)
model.literals(x, y, z)
constrain.at-most-k(x to z | 2)
model.print()
----
model=ex
literals (num = 3)
x, y, z
constraints (num = 1)
at-most-k: x, y, z | 2
sat
model.solve()
----
optimal
sat
result.bools(x to z)
----
x = false
y = false
z = false
# to update the testdata files
$ make rewrite
# to run specific tests
$ bazel test ... --test_output=all \
--cache_test_results=no \
--test_arg='-test.v' \
--test_filter='Test.*'
The SWIG interface files to work with protobufs was cribbed from AirspaceTechnologies/or-tools. To figure out how to structure this package as a stand-alone bazel target, I looked towards from gonzojive/or-tools-go. The CP-SAT stuff was then mostly pattern matching.