python model.py
-
GAN/
-
log/--------Where tensorboard log is saved
-
mnist/------Where mnist dataset is placed
-
model/------Where model and checkpoint file is saved
-
output/-----Where generated images from each epoch is saved
-
model.py---defines GAN model and solver
-
ops.py-----defines ops used by GAN
-
utils.py---miscellaneous helper functions
-
-
Generator:
- fc1024 bn lrelu -> fc128*7*7 bn lrelu -> conv_transpose 14*14*64 bn lrelu -> conv_transpose 28*28*1 tanh
-
Discriminator:
- convf64 bn lrelu -> convf128 bn lrelu -> fc1024 bn lrelu -> fc1 sigmoid
-
Dataset:
- MNIST input normalized to [-1, 1]
-
Initialization:
- Xavier Initialization (Makes a huge difference)
-
Activation:
- leaky relu 0.02
-
Used batch_norm layer from tf.contrib.layers