/SMILEtrack

Primary LanguageJupyter Notebook

SMILEtrack

PWC

PWC

This code is based on the implementation of ByteTrack, BoT-SORT

SMILEtrack: SiMIlarity LEarning for Multiple Object Tracking

Preprint will be appearing soon

1. Installation

SMILEtrack code is based on ByteTrack and BoT-SORT

Visit their installation guides for more setup options.

2. Download

PRBNet MOT17 weight link

PRBNet MOT20 weight link

SLM weight link

3.Data Preparation

Download MOT17 from the official website. And put them in the following structure:

<dataets_dir>
      │
      ├── MOT17
      │      ├── train
      │      └── test    
      └——————crowdhuman
      |         └——————Crowdhuman_train
      |         └——————Crowdhuman_val
      |         └——————annotation_train.odgt
      |         └——————annotation_val.odgt
      └——————MOT20
      |        └——————train       
      |        └——————test
      └——————Cityscapes
               └——————images
               └——————labels_with_ids
    

4.Training PRBNet

Single GPU training

cd <prb_dir>
$ python train_aux.py --workers 8 --device 0 --batch-size 4 --data data/mot.yaml --img 1280 1280 --cfg cfg/training/PRB_Series/yolov7-PRB-2PY-e6e-tune-auxpy1.yaml --weights './yolov7-prb-2py-e6e.pt' --name yolov7-prb --hyp data/hyp.scratch.p6.yaml --epochs 100

5.Training SLM

Data structure

<dataets_dir>
    ├─A
    ├─B
    ├─label
    └─list
    

A: images of t1 phase;

B: images of t2 phase;

label: label maps;

list: contains train.txt, val.txt and test.txt, each file records the image names (XXX.png) in the change detection dataset.

For the more detail of the training setting, you can follow BIT_CD training code.

6.Tracking

By submitting the txt files produced in this part to MOTChallenge website and you can get the same results as in the paper. Tuning the tracking parameters carefully could lead to higher performance. In the paper we apply ByteTrack's calibration.

Track by detector YOLOX

cd <BoT-SORT_dir>
$ python3 tools/track.py <dataets_dir/MOT17> --default-parameters --with-reid --benchmark "MOT17" --eval "test" --fp16 --fuse
$ python3 tools/interpolation.py --txt_path <path_to_track_result>

Track by detector PRBNet

cd <BoT-SORT_dir>
$ python3 tools/track_prb.py <dataets_dir/MOT17> --default-parameters --with-reid --benchmark "MOT17" --eval "test" --fp16 --fuse
$ python3 tools/interpolation.py --txt_path <path_to_track_result>

7.Tracking performance

Results on MOT17 challenge test set

Tracker MOTA IDF1 HOTA
SMILEtrack 81.06 80.5 65.28

Results on MOT20 challenge test set

Tracker MOTA IDF1 HOTA
SMILEtrack 78.19 77.53 65.28

8.Acknowledgement

A large part of the codes, ideas and results are borrowed from PRBNet, ByteTrack, BoT-SORT, yolov7, thanks for their excellent work!