/InfrasCal

InfrasCal: Automatic Infrastructure-based Intrinsic and Extrinsic Calibration of a Multi-camera System

Primary LanguageC++OtherNOASSERTION

InfrasCal

Introduction

This C++ library supports the following tasks:

  1. Extrinsic infrastructure-based calibration of a multi-camera rig
  2. Intrinsic and extrinsic infrastructure-based calibration of a multi-camera rig

The following two camera models are supported in this library:

  • Pinhole camera model with radial and tangential distortion
  • Equidistant fish-eye model (J. Kannala, and S. Brandt, A Generic Camera Model and Calibration Method for Conventional, Wide-Angle, and Fish-Eye Lenses, PAMI 2006)

The infrastructure-based calibration runs in near real-time, and is strongly recommended if you are calibrating multiple rigs with mapping datasets.

The workings of the library are described in the three papers:

    Yukai Lin, Viktor Larsson, Marcel Geppert, Zuzana Kukelova, Marc Pollefeys, Torsten Sattler,
    Infrastructure-based Multi-Camera Calibration using Radial Projections, ECCV 2020.

    Lionel Heng, Mathias Bürki, Gim Hee Lee, Paul Furgale, Roland Siegwart, and Marc Pollefeys,
    Infrastructure-Based Calibration of a Multi-Camera Rig,
    In Proc. IEEE International Conference on Robotics and Automation (ICRA), 2014.
    
    Lionel Heng, Paul Furgale, and Marc Pollefeys,
    Leveraging Image-based Localization for Infrastructure-based Calibration of a Multi-camera Rig,
    Journal of Field Robotics (JFR), 2015.

If you use this library in an academic publication, please cite at least the following paper:

@InProceedings{Lin2020ECCV,
    author = {Yukai Lin and Viktor Larsson and Marcel Geppert and Zuzana Kukelova and Marc Pollefeys and Torsten Sattler},
    title = {{Infrastructure-based Multi-Camera Calibration using Radial Projections}},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2020},
}

Depending on which parts of the library you use, please cite the appropriate papers from the list above.

Acknowledgements

The InfrasCal library includes third-party code from the following sources:

    1. Lionel Heng, Bo Li, and Marc Pollefeys,
       CamOdoCal: Automatic Intrinsic and Extrinsic Calibration of a Rig
       with Multiple Generic Cameras and Odometry,
       https://github.com/hengli/camodocal

    2. Sameer Agarwal, Keir Mierle, and Others,
       Ceres Solver.
       https://code.google.com/p/ceres-solver/
    
    3. D. Galvez-Lopez, and J. Tardos,
       Bags of Binary Words for Fast Place Recognition in Image Sequences,
       IEEE Transactions on Robotics, 28(5):1188-1197, October 2012.

    4. L. Kneip, D. Scaramuzza, and R. Siegwart,
       A Novel Parametrization of the Perspective-Three-Point Problem for a
       Direct Computation of Absolute Camera Position and Orientation,
       In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2011.

    5. pugixml
       http://pugixml.org/

    6. Changchang wu,
       SiftGPU: A GPU implementation of David Lowe's Scale Invariant Feature Transform
       http://cs.unc.edu/~ccwu
       
    7. Viktor Larsson, Torsten Sattler, Zuzana Kukelova and Marc Pollefeys,
       Revisiting Radial Distortion Absolute Pose.
       https://github.com/vlarsson/radialpose

Build Instructions for Ubuntu

Required dependencies

  • BLAS (Ubuntu package: libblas-dev)
  • Boost (Ubuntu package: libboost-all-dev)
  • Eigen3 (Ubuntu package: libeigen3-dev)
  • SuiteSparse (Ubuntu package: libsuitesparse-dev)
  • Ceres-solver (Ubuntu package: libceres-dev)
  • CUDA
  • OpenCV+contrib

Optional dependencies

  • GTest
  • Glog (Ubuntu package: libgoogle-glog-dev)

Tested configuration versions

  • Ubuntu 18.04
  • Ceres 1.13.0
  • Eigen 3.3.4
  • OpenCV & opencv_contrib 3.4.2, 4.1.1
  • Boost 1.65.1
  • Cuda 9.1, 10.1
  1. Before you compile the repository code, you need to install the required dependencies, and install the optional dependencies if required.

    • Install Cuda

    • Build required dependencies

      sudo apt-get install cmake git gcc-6 g++-6 libopenblas-dev libblas-dev libeigen3-dev libgoogle-glog-dev 
      sudo apt-get install build-essential libgl1-mesa-dev libglu1-mesa-dev freeglut3-dev libglew-dev
      sudo apt-get install libatlas-base-dev libsuitesparse-dev libsqlite3-dev libceres-dev libboost-all-dev
      
    • Build Opencv

      mkdir -p ~/dev && cd ~/dev
      git clone --depth 1 --branch 3.4.2 https://github.com/opencv/opencv.git
      git clone --depth 1 --branch 3.4.2 https://github.com/opencv/opencv_contrib.git
      cd opencv && mkdir build && cd build
      CC=/usr/bin/gcc-6 CXX=/usr/bin/g++-6 cmake .. -DWITH_CUDA=ON -DCMAKE_BUILD_TYPE=Release \
      -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules -DOPENCV_ENABLE_NONFREE:BOOL=ON \
      -DCUDA_NVCC_FLAGS=--expt-relaxed-constexpr
      make -j8
      sudo make install
      
  2. Build the code.

    mkdir -p ~/dev && cd ~/dev
    git clone https://github.com/youkely/InfrasCal.git 
    cd InfrasCal && mkdir build && cd build
    CC=/usr/bin/gcc-6 CXX=/usr/bin/g++-6 cmake -DCMAKE_BUILD_TYPE=Release ..
    make -j8
    

Examples

Go to the source folder. To see all allowed options for each executable, use the --help option which shows a description of all available options.

  1. Infrastructure-based calibration

     ./build/bin/infrastr_calib --camera-count 5 \
     --output ./data/demo/results \
     --map ./data/demo/map \
     --database ./data/demo/map/database.db \
     --input ./data/demo/ \
     --vocab ./data/vocabulary/sift128.bin \
     -v --camera-model pinhole-radtan --save
    

    The camera-model parameter takes one of the following two values: pinhole-radtan, and pinhole-equi(kannala-brandt).

    The calibration mode takes one of the following options: InRaSU(default, corresponds to Inf+1DR+RA in the ECCV2020 paper), In(Inf+K), InRI(Inf+K+RI), InRa(Inf+RD), InRaS(Inf+RD+RA)

Something was added here

Hi there!