/model_compression

PyTorch Model Compression

Primary LanguagePythonMIT LicenseMIT

Model Compression

License: MIT

All Contributors

Contents

Getting started

Prerequisites

  • This repository is implemented and verified on Anaconda virtual environment with python 3.7

Installation

  1. Clone this repository.
$ git clone https://github.com/j-marple-dev/model_compression.git
$ cd model_compression
  1. Create virtual environment
$ conda env create -f environment.yml 
$ conda activate model_compression

or

$ make install 
$ conda activate model_compression
  1. (Optional for contributors) Install CI environment
$ conda activate model_compression
$ make dev
  1. (Optional for nvidia gpu) Install cudatoolkit.
$ conda activate model_compression
$ conda install -c pytorch cudatooolkit=${cuda_version}

After environment setup, you can validate the code by the following commands.

$ make format  # for formatting
$ make test  # for linting

Docker

  1. Clone this repository.
$ git clone https://github.com/j-marple-dev/model_compression.git
$ cd model_compression
  1. Make sure you have installed Docker Engine and nvidia-docker.

  2. Run the docker image.

$ docker run -it --gpus all --ipc=host -v $PWD:/app/model_compression jmarpledev/model_compression:latest /bin/bash
$ cd model_compression

Usages

Run training

Training the model. Trainer supports the following options:

$ python train.py --help
usage: train.py [-h] [--multi-gpu] [--gpu GPU] [--finetune FINETUNE]
                [--resume RESUME] [--half] [--wlog] [--config CONFIG]

Model trainer.

optional arguments:
  -h, --help           show this help message and exit
  --multi-gpu          Multi-GPU use
  --gpu GPU            GPU id to use
  --finetune FINETUNE  Model path to finetune (.pth.tar)
  --resume RESUME      Input log directory name to resume in save/checkpoint
  --half               Use half precision
  --wlog               Turns on wandb logging
  --config CONFIG      Configuration path (.py)

$ python train.py --config path_to_config.py  # basic run
$ python train.py --config path_to_config.py  --gpu 1 --resume checkpoint_dir_name # resume training on gpu 1

Configurations for training

Following options are available:

  • Basic Settings: BATCH_SIZE, EPOCHS, SEED, MODEL_NAME(src/models), MODEL_PARAMS, DATASET
  • Stochatic Gradient descent: MOMENTUM, WEIGHT_DECAY, LR
  • Image Augmentation: AUG_TRAIN(src/augmentation/policies.py), AUG_TRAIN_PARAMS, AUG_TEST(src/augmentation/policies.py), CUTMIX
  • Loss: CRITERION(src/criterions.py), CRITERION_PARAMS
  • Learning Rate Scheduler: LR_SCHEDULER(src/lr_schedulers.py), LR_SCHEDULER_PARAMS
# Example of train config(config/train/cifar/densenet_121.py)
import os

config = {
    "SEED": 777,
    "AUG_TRAIN": "randaugment_train_cifar100_224",
    "AUG_TRAIN_PARAMS": dict(n_select=2, level=None),
    "AUG_TEST": "simple_augment_test_cifar100_224",
    "CUTMIX": dict(beta=1, prob=0.5),
    "DATASET": "CIFAR100",
    "MODEL_NAME": "densenet",
    "MODEL_PARAMS": dict(
        num_classes=100,
        inplanes=24,
        growthRate=32,
        compressionRate=2,
        block_configs=(6, 12, 24, 16),
        small_input=False,
        efficient=False,
    ),
    "CRITERION": "CrossEntropy", # CrossEntropy, HintonKLD
    "CRITERION_PARAMS": dict(num_classes=100, label_smoothing=0.1),
    "LR_SCHEDULER": "WarmupCosineLR", # WarmupCosineLR, Identity, MultiStepLR
    "LR_SCHEDULER_PARAMS": dict(
        warmup_epochs=5, start_lr=1e-3, min_lr=1e-5, n_rewinding=1
    ),
    "BATCH_SIZE": 128,
    "LR": 0.1,
    "MOMENTUM": 0.9,
    "WEIGHT_DECAY": 1e-4,
    "NESTEROV": True,
    "EPOCHS": 300,
    "N_WORKERS": os.cpu_count(),
}

Run pruning

Pruning makes a model sparse. Pruner supports the following methods:

  1. Unstructured Pruning
  1. Structured (Channel-wise) Pruning

Usually, unstructured pruning gives more sparsity, but it doesn't support shrinking.

$ python prune.py --help
usage: prune.py [-h] [--multi-gpu] [--gpu GPU] [--resume RESUME] [--wlog]
                [--config CONFIG]

Model pruner.

optional arguments:
  -h, --help       show this help message and exit
  --multi-gpu      Multi-GPU use
  --gpu GPU        GPU id to use
  --resume RESUME  Input checkpoint directory name
  --wlog           Turns on wandb logging
  --config CONFIG  Configuration path

usage: prune.py [-h] [--gpu GPU] [--resume RESUME] [--wlog] [--config CONFIG]

$ python prune.py --config path_to_config.py  # basic run
$ python prune.py --config path_to_config.py --multi-gpu --wlog  # run on multi-gpu with wandb logging

Configurations for pruning

Pruning configuration extends training configuration (recommended) with following options:

  • Basic Training Settings: TRAIN_CONFIG
  • Pruning Settings: N_PRUNING_ITER, PRUNE_METHOD(src/runner/pruner.py), PRUNE_PARAMS
# Example of prune config(config/prune/cifar100/densenet_small_l2mag.py)
from config.train.cifar100 import densenet_small

train_config = densenet_small.config
config = {
    "TRAIN_CONFIG": train_config,
    "N_PRUNING_ITER": 15,
    "PRUNE_METHOD": "Magnitude", # LotteryTicketHypothesis, Magnitude, NetworkSlimming, SlimMagnitude
    "PRUNE_PARAMS": dict(
        PRUNE_AMOUNT=0.2,  # it iteratively prunes 20% of the network parameters at the end of trainings
        NORM=2,
        STORE_PARAM_BEFORE=train_config["EPOCHS"],  # used for weight initialization at every pruning iteration
        TRAIN_START_FROM=0,  # training starts from this epoch
        PRUNE_AT_BEST=False,  # if True, it prunes parameters at the trained network which achieves the best accuracy
                              # otherwise, it prunes the network at the end of training
    ),
}

Run shrinking (Experimental)

Shrinking reshapes a pruned model and reduce its size.

$ python shrink.py --help
usage: shrink.py [-h] [--gpu GPU] [--checkpoint CHECKPOINT] [--config CONFIG]

Model shrinker.

optional arguments:
  -h, --help            show this help message and exit
  --gpu GPU             GPU id to use
  --checkpoint CHECKPOINT
                        input checkpoint path to quantize
  --config CONFIG       Pruning configuration path

$ python shrink.py --config path_to_config.py --checkpoint path_to_checkpoint.pth.tar  # basic run
Important Notes:

Shrinker is now experimental. It only supports:

  • channel-wise prunned models
  • networks that consist of conv-bn-activation sequence
  • network blocks that has channel concatenation followed by skip connections (e.g. DenseNet)
  • networks that have only one last fully-connected layer

On the other hads, it doesn't support:

  • network blocks that has element-wise sum followed by skip connections (e.g. ResNet, MixNet)
  • networks that have multiple fully-connected layers
  • Quantization after shrinking

Run quantization

It conducts one of 8-bit quantization methods:

  • post-training static quantization
  • Quantization-Aware Training
$ python quantize.py --help
usage: quantize.py [-h] [--resume RESUME] [--wlog] [--config CONFIG]
                   [--checkpoint CHECKPOINT]

Model quantizer.

optional arguments:
  -h, --help            show this help message and exit
  --resume RESUME       Input log directory name to resume
  --wlog                Turns on wandb logging
  --static              Post-training static quantization
  --config CONFIG       Configuration path
  --checkpoint CHECKPOINT
                        Input checkpoint path to quantize

$ python quantize.py --config path_to_config.py --checkpoint path_to_checkpoint.pth.tar  # basic qat run
$ python quantize.py --config path_to_config.py --checkpoint path_to_checkpoint.pth.tar --static  # basic static quantization run

Experiment Results

WANDB Log

Unstructured Pruning (LTH vs Weight Rewinding vs LR Rewinding)

Screen Shot 2020-08-24 at 1 00 31 AM

Structured Pruning (Slim vs L2Mag vs L2MagSlim)

Screen Shot 2020-08-26 at 11 05 22 PM

Shrinking after Structured Pruning

Densenet (L=100, k=12) pruned by 19.66% (Slim & CIFAR100)

parameters

  • Accuracy: 80.37%
  • Parameters: 0.78M -> 0.51M
  • Model Size: 6.48Mb -> 4.14Mb
$ python shrink.py --config config/prune/cifar100/densenet_small_slim.py --checkpoint path_to_checkpoint.pth.tar

2020-08-26 13:50:38,442 - trainer.py:71 - INFO - Created a model densenet with 0.78M params
[Test]  100% (157 of 157) |#########################################################################################| Elapsed Time: 0:00:02 Time:  0:00:02
2020-08-26 13:50:42,719 - shrinker.py:104 - INFO - Acc: 80.37, Size: 6.476016 MB, Sparsity: 19.66 %
[Test]  100% (157 of 157) |#########################################################################################| Elapsed Time: 0:00:02 Time:  0:00:02
2020-08-26 13:50:45,781 - shrinker.py:118 - INFO - Acc: 80.37, Size: 4.141713 MB, Params: 0.51 M
Densenet (L=100, k=12) pruned by 35.57% (Network Slimming & CIFAR100)

parameters

  • Accuracy: 79.07%
  • Parameters: 0.78M -> 0.35M
  • Model Size: 6.48Mb -> 2.85Mb
$ python shrink.py --config config/prune/cifar100/densenet_small_slim.py --checkpoint path_to_checkpoint.pth.tar

2020-08-26 13:52:58,946 - trainer.py:71 - INFO - Created a model densenet with 0.78M params
[Test]  100% (157 of 157) |#########################################################################################| Elapsed Time: 0:00:02 Time:  0:00:02
2020-08-26 13:53:03,100 - shrinker.py:104 - INFO - Acc: 79.07, Size: 6.476016 MB, Sparsity: 35.57 %
[Test]  100% (157 of 157) |#########################################################################################| Elapsed Time: 0:00:02 Time:  0:00:02
2020-08-26 13:53:06,114 - shrinker.py:118 - INFO - Acc: 79.07, Size: 2.851149 MB, Params: 0.35 M

Quantization

Post-training Static Quantization
$ python quantize.py --config config/quantize/cifar100/densenet_small.py --checkpoint save/test/densenet_small/296_81_20.pth.tar --static --check-acc

2020-08-26 13:57:02,595 - trainer.py:71 - INFO - Created a model quant_densenet with 0.78M params
2020-08-26 13:57:05,275 - quantizer.py:87 - INFO - Acc: 81.2 %  Size: 3.286695 MB
2020-08-26 13:57:05,344 - quantizer.py:95 - INFO - Post Training Static Quantization: Run calibration
[Test]  100% (157 of 157) |#########################################################################################| Elapsed Time: 0:02:40 Time:  0:02:40
2020-08-26 13:59:47,555 - quantizer.py:117 - INFO - Acc: 81.03 %  Size: 0.974913 MB
Quantization-Aware Training
$ python quantize.py --config config/quantize/cifar100/densenet_small.py --checkpoint path_to_checkpoint.pth.tar --check-acc

2020-08-26 14:06:46,855 - trainer.py:71 - INFO - Created a model quant_densenet with 0.78M params
2020-08-26 14:06:49,506 - quantizer.py:87 - INFO - Acc: 81.2 %  Size: 3.286695 MB
2020-08-26 14:06:49,613 - quantizer.py:99 - INFO - Quantization Aware Training: Run training
2020-08-26 14:46:51,857 - trainer.py:209 - INFO - Epoch: [0 | 4]        train/lr: 0.0001        train/loss: 1.984219    test/loss: 1.436638     test/model_acc: 80.96%    test/best_acc: 80.96%
[Train] 100% (782 of 782) |########################################################################################| Elapsed Time: 0:38:09 Time:  0:38:09
[Test]  100% (157 of 157) |#########################################################################################| Elapsed Time: 0:02:40 Time:  0:02:40
2020-08-26 15:27:43,919 - trainer.py:209 - INFO - Epoch: [1 | 4]        train/lr: 9e-05 train/loss: 1.989543    test/loss: 1.435748     test/model_acc: 80.87%    test/best_acc: 80.96%
[Train] 100% (782 of 782) |########################################################################################| Elapsed Time: 0:38:10 Time:  0:38:10
[Test]  100% (157 of 157) |#########################################################################################| Elapsed Time: 0:02:36 Time:  0:02:36
2020-08-26 16:08:32,883 - trainer.py:209 - INFO - Epoch: [2 | 4]        train/lr: 6.5e-05       train/loss: 1.984149    test/loss: 1.436074     test/model_acc: 80.82%    test/best_acc: 80.96%
[Train] 100% (782 of 782) |########################################################################################| Elapsed Time: 0:38:14 Time:  0:38:14
[Test]  100% (157 of 157) |#########################################################################################| Elapsed Time: 0:02:39 Time:  0:02:39
2020-08-26 16:49:28,848 - trainer.py:209 - INFO - Epoch: [3 | 4]        train/lr: 3.5e-05       train/loss: 1.984537    test/loss: 1.43442      test/model_acc: 81.01%    test/best_acc: 81.01%
[Train] 100% (782 of 782) |########################################################################################| Elapsed Time: 0:38:19 Time:  0:38:19
[Test]  100% (157 of 157) |#########################################################################################| Elapsed Time: 0:02:42 Time:  0:02:42
2020-08-26 17:30:32,187 - trainer.py:209 - INFO - Epoch: [4 | 4]        train/lr: 1e-05 train/loss: 1.990936    test/loss: 1.435393     test/model_acc: 80.92%    test/best_acc: 81.01%
[Test]  100% (157 of 157) |#########################################################################################| Elapsed Time: 0:02:37 Time:  0:02:37
2020-08-26 17:33:10,689 - quantizer.py:117 - INFO - Acc: 81.01 %        Size: 0.974913 MB

Class Diagram

class_diagram

References

Papers

Architecture / Training
Augmentation
Pruning
Knowledge Distillation
Quantization

Implementations / Tutorials

Competition
Architecture / Training
Augmentation
Pruning
Knowledge Distillation
Quantization

Contributors

Thanks goes to these wonderful people (emoji key):


Jinwoo Park (Curt)

💻

Junghoon Kim

💻

Hyungseok Shin

💻

Juhee Lee

💻

Jongkuk Lim

💻

Haneol Kim

💻

This project follows the all-contributors specification. Contributions of any kind welcome!