/Prompt-Tuning-Strikes-Back-with-LOPA

Official PyTorch Implementation of LoPA, accepted at NeurIPS 2024

Primary LanguagePythonMIT LicenseMIT

Prompt Tuning Strikes Back: Customizing Foundation Models with Low-Rank Prompt Adaptation

This repository contains the official implementation of the paper titled "Prompt Tuning Strikes Back: Customizing Foundation Models with Low-Rank Prompt Adaptation" accepted at NIPS 24.

Image 1 A schematic illustrating how typical PEFT methods like LoRA achieve personalization of a foundation model for multiple tasks. Image 2 An illustration of LOPA. No task-specific adapters need to be stored on the server.

Installing Dependencies

To set up the project dependencies, you have two options:

Option 1: Using pip

pip install -r requirements.txt

Option 2: Using docker

Alternatively, you can use a Docker image with pre-installed dependencies.

docker pull aj0509/prog_synth:latest

Training the Model

To tune the model, you need to run the tune_foundation_model.py script.

Arguments

  • --peft_method: Specifies the PEFT method to be used.

    • Possible values: lora, pt, idpg, lopa
  • --task_name: Name of the task to be trained on.

    • Possible values: mbpp, cruxeval_input_prediction, cruxeval_output_prediction
  • --model_type: Specifies the type of foundation model to be used for PEFT.

    • Possible values: phi-2, phi-3, codegen-350M, codegen2-3_7B, deepseek-coder-1.3b-base, deepseek-coder-7b-base, Meta-Llama-3-8B
  • --enc_model_type: Specifies the type of encoder model to be used in lopa or idpg.

    • Possible values: codebert-base, codesage-small, codesage-base, codesage-large
  • --num_virtual_tokens: Length of soft prompt (=m)

    • Example: 5, 10, 25
  • --lp_rank: Low-Rank for matrix factorization in LOPA (=r)

    • Example: 1, 2, 4
  • --num_epochs: Number of epochs to train the model.

    • Example: 10
  • --per_gpu_train_batch_size: Number of training samples per GPU.

    • Example: 2
  • --lr: Learning rate for the optimizer.

    • Example: 0.001 used for PT-based methods, 0.0001 used for LoRA and 0.00001 used for FFT.
  • --log_dir: Directory to save logs. By default, the current timestamp is used as the name of the directory.

    • Example: ./logs
  • --wandb_logging: Flag to enable logging to Weights and Biases.

Sample Command

Here is a sample command that tunes phi-2 for MBPP using LOPA with 10 virtual tokens and rank 1:

python tune_foundation_model.py --peft_method lopa --task_name mbpp --model_type phi-2 --enc_model_type codesage-small --num_virtual_tokens 10 --lp_rank 1 --num_epochs 10 --per_gpu_train_batch_size 2 --lr 0.001

Using Huggingface Accelerator

For using accelerator. Here is an example command that uses deepspeed-stage2 with accelerate:

accelerate launch --config_file config_files/config_ds_zero_stage2_no_fp16.yaml tune_foundation_model.py

Requirements:

Use the following link for more details: Huggingface Accelerator

Full Fine-Tuning (FFT)

We provide a separate script for full fine-tuning tune_fft_baseline.py

Recommendation: Use Deepspeed-stage3 for FFT training to tune large models.

deepspeed tune_fft_baseline.py --path_to_ds_config config_files/zero_stage3_config.json --fp16 True --gradient_accumulation_steps 2

Requirements:


Evaluating and Getting Results

To evaluate the model, you need to generate predictions using generate_preds.py script.

Sample Command

Here is a sample command that generates predictions for phi-2 tuned on MBPP using LOPA with 10 virtual tokens and rank 1:

accelerate launch generate_preds.py --peft_method lopa --task_name mbpp --model_type phi-2 --enc_model_type codesage-small --num_virtual_tokens 10 --lp_rank 1

Additional Arguments Needed

Following arguments are needed to load the weights for the peft method.

  • --load_adapter_from: Path to directory containing the adapter weights for the foundation model. (Used by pt, lora, idpg, lopa)
  • --clf_predictor_path: Path to the encoder model weights for. (Used by lopa, idpg)
  • --load_base_from_path: Path to the base model weights. (Used by fft for un-sharded checkpoints)
  • --sharded_checkpoint_dir: Path to the sharded checkpoint directory. (Used by fft)

Post-Processing

Predictions of foundation models need to be post-processed before evaluation.

To run post-processing for MBPP, use the following command:

python postprocess_mbpp_preds.py --path "$path_to_mbxp_solutions_json"

To run post-processing for CruxEval-I, use the following command:

python postprocess_cruxeval_preds.py --path "$path_to_output_raw_json" --mode input

The processed predictions will be saved in the same directory as a different file.

Running Predictions

Requirements:

To evaluate predictions for MBPP, use the following command:

evaluate_functional_correctness "$path_to_mbxp_solutions_post_processed" --problem_file mxeval/mbpp_test_release_v1.jsonl

To evaluate predictions for CruxEval-I, use the following command:

python cruxeval/evaluation/evaluate_generations.py --generations_path "$path_to_output_json" --scored_results_path "$path_to_output_scored_json" --mode input

Results

We provide the sample results (pass@1) of running different PEFT methods phi-2 across different tasks. For rest of the results, please refer to the paper.

Tuning Method CruxEval-I CruxEval-O MBPP
None 33.5 33.0 45.17
FFT 40.2 37.0 55.03
LoRA 41.5 42.5 51.54
PT 35.0 34.0 49.69
IDPG 35.0 33.0 53.29
LOPA 43.0 37.2 52.15

Contributing

We welcome contributions to the project. Please raise an issue or submit a pull request.


References

To run larger models, we recommend using the following resources: Huggingface GPU Inference

Citation

@article{jain2024prompt,
  title={Prompt Tuning Strikes Back: Customizing Foundation Models with Low-Rank Prompt Adaptation},
  author={Jain, Abhinav and Chaudhuri, Swarat and Reps, Thomas and Jermaine, Chris},
  journal={arXiv preprint arXiv:2405.15282},
  year={2024}
}