/ai-reconocimiento-facial-python

Código fuente para el meetup de reconocimiento facial en Python del #campusFA

Primary LanguageHTMLApache License 2.0Apache-2.0

Código fuente del evento de "Inteligencia Artificial para el reconocimiento facial en Python"

El acceso al vídeo y resumen del evento se hará desde la propia web del #campusFA.

El archivo .html exportado muestra el resultado de toda la ejecución del código para aquellos que busquen echar un vistazo rápido a los conocimiento que presentan, o copiar slots de código para sus proyectos.

Para aquellos que quieran montarlo en su máquina local pueden seguir las instrucciones de los siguientes apartados.

Cosas a tener en cuenta para ejecutar el proyecto

  1. Se debe saber cómo crear entornos virtuales con Conda a partir de un fichero yml
  2. OpenCV puede dar problemas a la hora de instalar desde Conda (sobre todo con la integración de la web-cam). Se debe buscar el repositorio que corresponda a nuestro SO, siempre teniendo en cuenta la versión de Python especificada en el fichero yml.

Cómo lanzar el proyecto

  1. Clonar en tu máquina el repositorio

  2. Instalar conda (gestor de paquetes cientificos de Python). Con la instalación de Conda vendrá Jupyter también.

  3. Instalar con Conda el entorno virtual de Python extraído en el fichero fa-workshop01.yml

  4. Establecer Tensorflow como el backend de Keras con el siguiente comando.

    set KERAS_BACKEND=tensorflow para Windows KERAS_BACKEND=tensorflow para Limux/MacOS

    Para comprobar que todo está configurado correctamente: python -c "from keras import backend"

  5. Activar el entorno de desarrollo y hacer disponible este entorno virtual para que pueda ser ejecutado desde Jupyter. Se puede encontrar cómo hacerlo en este enlace.

  6. Descomprimir los dos archivos .zip que se encuentran en el directorio data

  7. Ejecutar el siguiente comando desde el directorio raíz del proyecto jupyter notebook

  8. Seleccionar nuestro entorno virtual para que el kernel de Jupyter ejecute el código usando nuestras librerías.

Autores

Juan Aguilar - AguilarGuisado

Todo el código es libre de ser distribuido y modificado bajo la licencia Apache v2.0