/keras-image-models

A library that includes Keras3 layers, blocks and models with pretrained weights, providing support for transfer learning, feature extraction, and more.

Primary LanguagePythonApache License 2.0Apache-2.0

KIMM

Keras PyPI Contributions Welcome GitHub Workflow Status codecov

Keras Image Models

Latest Updates

2024/06/02:

Introduction

Keras Image Models (kimm) is a collection of image models, blocks and layers written in Keras 3. The goal is to offer SOTA models with pretrained weights in a user-friendly manner.

KIMM is:

  • 🚀 A model zoo where almost all models come with pre-trained weights on ImageNet.
  • 🧰 Providing APIs to export models to .tflite and .onnx.
  • 🔧 Supporting the reparameterization technique.
  • ✨ Integrated with feature extraction capability.

Usage

  • kimm.list_models
  • kimm.models.*.available_feature_keys
  • kimm.models.*(...)
  • kimm.models.*(..., feature_extractor=True, feature_keys=[...])
import keras
import kimm

# List available models
print(kimm.list_models("mobileone", weights="imagenet"))
# ['MobileOneS0', 'MobileOneS1', 'MobileOneS2', 'MobileOneS3']

# Initialize model with pretrained ImageNet weights
# Note: all `kimm` models expect inputs in the value range of [0, 255] by
# default if `incldue_preprocessing=True`
x = keras.random.uniform([1, 224, 224, 3]) * 255.0
model = kimm.models.MobileOneS0()
y = model.predict(x)
print(y.shape)
# (1, 1000)

# Print some basic information about the model
print(model)
# <MobileOneS0 name=MobileOneS0, input_shape=(None, None, None, 3),
# default_size=224, preprocessing_mode="imagenet", feature_extractor=False,
# feature_keys=None>
# This information can also be accessed through properties
print(model.input_shape, model.default_size, model.preprocessing_mode)

# List available feature keys of the model class
print(kimm.models.MobileOneS0.available_feature_keys)
# ['STEM_S2', 'BLOCK0_S4', 'BLOCK1_S8', 'BLOCK2_S16', 'BLOCK3_S32']

# Enable feature extraction by setting `feature_extractor=True`
# `feature_keys` can be optionally specified
feature_extractor = kimm.models.MobileOneS0(
    feature_extractor=True, feature_keys=["BLOCK2_S16", "BLOCK3_S32"]
)
features = feature_extractor.predict(x)
for feature_name, feature in features.items():
    print(feature_name, feature.shape)
# BLOCK2_S16 (1, 14, 14, 256), BLOCK3_S32 (1, 7, 7, 1024), ...

Note

All models in kimm expect inputs in the value range of [0, 255] by default if incldue_preprocessing=True. Some models only accept static inputs. You should explicitly specify the input shape for these models by input_shape=[*, *, 3].

Advanced Usage

  • kimm.utils.get_reparameterized_model
  • kimm.export.export_tflite
  • kimm.export.export_onnx
import keras
import kimm
import numpy as np

# Initialize a reparameterizable model
x = keras.random.uniform([1, 224, 224, 3]) * 255.0
model = kimm.models.MobileOneS0()
y = model.predict(x)

# Get reparameterized model by kimm.utils.get_reparameterized_model
reparameterized_model = kimm.utils.get_reparameterized_model(model)
y2 = reparameterized_model.predict(x)
np.testing.assert_allclose(
    keras.ops.convert_to_numpy(y), keras.ops.convert_to_numpy(y2), atol=1e-3
)

# Export model to tflite format
kimm.export.export_tflite(reparameterized_model, 224, "model.tflite")

# Export model to onnx format
# Note: must be "channels_first" format before the exporting
# kimm.export.export_onnx(reparameterized_model, 224, "model.onnx")

Installation

pip install keras kimm -U

Important

Make sure you have installed a supported backend for Keras.

Quickstart

Image classification using the model pretrained on ImageNet

Open In Colab

Using kimm.models.VisionTransformerTiny16:

african_elephant
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 1s/step
Predicted: [('n02504458', 'African_elephant', 0.6895825), ('n01871265', 'tusker', 0.17934209), ('n02504013', 'Indian_elephant', 0.12927249)]

An end-to-end example: fine-tuning an image classification model on a cats vs. dogs dataset

Open In Colab

Using kimm.models.EfficientNetLiteB0:

kimm_prediction_0 kimm_prediction_1

Reference: Transfer learning & fine-tuning (keras.io)

Grad-CAM

Open In Colab

Using kimm.models.MobileViTS:

grad_cam

Reference: Grad-CAM class activation visualization (keras.io)

Model Zoo

Model Paper Weights are ported from API (kimm.models.*)
ConvMixer ICLR 2022 Submission timm ConvMixer*
ConvNeXt CVPR 2022 timm ConvNeXt*
DenseNet CVPR 2017 timm DenseNet*
EfficientNet ICML 2019 timm EfficientNet*
EfficientNetLite ICML 2019 timm EfficientNetLite*
EfficientNetV2 ICML 2021 timm EfficientNetV2*
GhostNet CVPR 2020 timm GhostNet*
GhostNetV2 NeurIPS 2022 timm GhostNetV2*
GhostNetV3 arXiv 2024 github GhostNetV3*
HGNet timm HGNet*
HGNetV2 timm HGNetV2*
InceptionNeXt CVPR 2024 timm InceptionNeXt*
InceptionV3 CVPR 2016 timm InceptionV3
LCNet arXiv 2021 timm LCNet*
MobileNetV2 CVPR 2018 timm MobileNetV2*
MobileNetV3 ICCV 2019 timm MobileNetV3*
MobileOne CVPR 2023 timm MobileOne*
MobileViT ICLR 2022 timm MobileViT*
MobileViTV2 arXiv 2022 timm MobileViTV2*
RegNet CVPR 2020 timm RegNet*
RepVGG CVPR 2021 timm RepVGG*
ResNet CVPR 2015 timm ResNet*
TinyNet NeurIPS 2020 timm TinyNet*
VGG ICLR 2015 timm VGG*
ViT ICLR 2021 timm VisionTransformer*
Xception CVPR 2017 keras Xception

The export scripts can be found in tools/convert_*.py.

License

Please refer to timm as this project is built upon it.

kimm Code

The code here is licensed Apache 2.0.

Acknowledgements

Thanks for these awesome projects that were used in kimm

Citing

BibTeX

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
@misc{hy2024kimm,
  author = {Hongyu Chiu},
  title = {Keras Image Models},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/james77777778/kimm}}
}