/NQG_ASs2s

Implementation of <Improving Neural Question Generation Using Answer Separation> by Yanghoon Kim et al.

Primary LanguagePython

NQG_ASs2s

Implementation of <Improving Neural Question Generation Using Answer Separation> by Yanghoon Kim et al.

The source code still needs to be modified

  1. Model

    • Embedding

      • Pretrained GloVe embeddings
      • Randomly initialized embeddings
    • Answer-separated seq2seq

      • Answer-separated encoder
      • Answer-separated decoder
        • Keyword-net
        • Retrieval style word generator
    • Named Entity Replacement (To be updated)

    • Post processing

      • Remove repetition (To be updated)
  2. Dataset

Processed data provided by Linfeng Song et al.

  1. Extra tools

    • Parameter Search (To be updated)

Requirements

  • python 2.7
  • numpy
  • Tensorflow 1.4
  • tqdm

Usage

  1. Data preprocessing
# Extract dataset
tar -zxvf data/mpqg_data/nqg_data.tgz -C data/mpqg_data

# Process data
cd data
python process_mpqg_data.py # Several settings can be modified inside the source code (data path, vocab_size, etc)
  1. Download & process GloVe
mkdir GloVe # data/GloVe
wget http://nlp.stanford.edu/data/glove.840B.300d.zip -P GloVe/
unzip GloVe/glove.840B.300d.zip -d GloVe/
python process_embedding.py # This will take a couple of minutes
  1. Run a single model
# Train
bash run.sh [dataset] train [checkpoint name] [epochs] # define dataset name inside run.sh
# EXAMPLE: bash run.sh squad train firstmodel 15

# Test
bash run.sh [dataset] pred [checkpoint name] [epochs] # enter random number in [epochs]
# EXAMPLE: bash run.sh squad pred firstmodel 1
  1. Parameter search