- README.md : [ English ] [ 한국어 ]
- Homepage : [ Korean Only (한국어) ]
Machine Learning / Deep Learning with RNN(LSTM, JZS1) - Compose Music, Waltz
- After training with notes information of midi files of Data Set,
- machine will compose simple trained style music.
- This Project is composed of simple python codes to do above process.
- Even if you don`t have prior knowledge of Deep Learning,
- as you modify and test following the python codes and the dependencies in below,
- without knowledge of mathematics,
- basically you can experience glimpse of Deep Learning in python.
- an optimized BLAS(Basic Linear Algebra subroutines) library based on GotoBLAS2 1.13 BSD version.
- Requires NumPy
- gfortran is required before installing OpenBLAS
- http://www.openblas.net/
- https://github.com/xianyi/OpenBLAS/wiki
- NumPy is the fundamental package for scientific computing with Python.
- a powerful N-dimensional array object
- sophisticated (broadcasting) functions
- tools for integrating C/C++ and Fortran code
- useful linear algebra, Fourier transform, and random number capabilities
- Normally used with SciPy in combination
- http://www.numpy.org/
- Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.
- tight integration with NumPy – Use numpy.ndarray in Theano-compiled functions.
- transparent use of a GPU – Perform data-intensive calculations up to 140x faster than with CPU.(float32 only)
- efficient symbolic differentiation – Theano does your derivatives for function with one or many inputs.
- speed and stability optimizations – Get the right answer for log(1+x) even when x is really tiny.
- dynamic C code generation – Evaluate expressions faster.
- extensive unit-testing and self-verification – Detect and diagnose many types of mistake.
- http://deeplearning.net/software/theano/#
- Neural Network Library (by Python)
- Keras is a minimalist, highly modular neural network library in the spirit of Torch, written in Python, that uses Theano under the hood for optimized tensor manipulation on GPU and CPU.
- https://github.com/fchollet/keras
- http://keras.io/
- Zulko made this library.
- Unroll is a Python module for the transcription of piano rolls to sheet music.
- It can transcribe from a MIDI file or from a video of a piano roll. It finds the notes, the tempo, roughly separates the hands, and writes the result in a Lilypond file.
- http://zulko.github.io/blog/2014/02/12/transcribing-piano-rolls/
- http://zulko.github.io/unroll/
- https://github.com/Zulko/unroll
- a toolkit for computer-aided musicology (MIT)
- http://web.mit.edu/music21/
- http://web.mit.edu/music21/doc/index.html
Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription
- http://www-etud.iro.umontreal.ca/~boulanni/icml2012
- Above midi files data set was used to train and test.
- If you want to train with above Data Set directly, please refer Usage : Change Data Set below
music-rnn
├── README.md
└── rnn_lstm_jzs1_eng
├── data
│ ├── JSB Chorales
│ │ ├── test
│ │ ├── train
│ │ └── valid
│ ├── MuseData
│ │ ├── test
│ │ ├── train
│ │ └── valid
│ ├── Nottingham
│ │ ├── test
│ │ ├── train
│ │ └── valid
│ └── Piano-midi.de
│ ├── test
│ ├── train
│ └── valid
├── data_for_train
│ └── waltzes
│ ├── waltzes_simple_chords_1.mid
│ ├── waltzes_simple_chords_2.mid
│ ├── waltzes_simple_chords_3.mid
│ ├── waltzes_simple_chords_6.mid
│ └── waltzes_simple_chords_7.mid
├── predict_Waltzes
├── predMidi_Waltzes
│ └── bach_lstm_pred_midi_2015.11.11.15:32:34.mid
├── wts_Waltzes
│ └── train_piano_wts_seq_model_2015.11.11.23:52:29.wts
├── __init__.py
├── data_init.py
├── model_util.py
├── train_piano.py
└── readme.md
- when executing train_piano.py with Python Compiler
- /music-rnn/rnn_lstm_jzs1_eng/wts_Waltzes/train_piano_wts_seq_model_2015.11.11.23:52:29.wt
- LSTM(Long Short Term Memory) training model will load above weights file
- next, start training with 5 midi files in music-rnn/rnn_lstm_jzs1_eng/data_for_train/waltzes
$ git clone https://github.com/jamonglab/music-rnn.git
$ cd music-rnn
$ python train_piano.py
-
use command git clone(copy), download(clone) music-rnn project
-
move to directory, music-rnn project downloaded
-
execute train_piano.py
- directory to save composed waltz (midi format)
- in source code of train_piano.py
if iteration % 10 == 0:
- during training, prediction is processed at every 10th iteration
- after prediction, it composes new waltz with using calculated weights.
DIR_PREDICTED_MIDI = "./predMidi_Waltzes/" # save predicted(created) midi file
- and new waltz will be saved at /predMidi_Waltzes automatically.
- directory to save composed waltz (midi format)
- If you don`t edit any source code of this project, train_piano.py will load weights file(see below source code) and apply it to Training Model.
# load automatically : load weights which is containing the latest weights infomation
try:
wts_list = os.listdir(DIR_WEIGHTS)
if len(wts_list) != 0:
wts_list.sort()
model.load_weights(DIR_WEIGHTS + wts_list[-1])
print "\n...... Loaded weights file : {0} ......".format(wts_list[-1])
except:
pass
# # load passively
# #
# # waltzes wts file ==> loss: 1.5240 - acc: 0.3573
# # ./wts_Waltzes/train_piano_wts_seq_model_2015.11.11.23:52:29.wts
# filename_wts = "train_piano_wts_seq_model_2015.11.11.23:52:29.wts"
# try:
# model.load_weights(DIR_WEIGHTS + filename_wts)
# print "\n... Loaded weights file : {0} ...".format(filename_wts)
# except:
# pass
- Creating weights file
- delete music-rnn/rnn_lstm_jzs1_eng/wts_Waltzes/train_piano_wts_seq_model_2015.11.11.23:52:29.wts file
- or move above file to another path
- just follow above Basic Usage
- Using other weights file
- (see above source codes) comment load automatically block, and uncomment load passively block,
- next, move other weights file that you want to use for train to DIR_WEIGHTS directory,
- write the weights file name to filename_wts = "other_file_name",
- follow above Basic Usage
- In case of using Data set of Modeling Temporal Dependencies in High-Dimensional Sequences as in this source,
- http://www-etud.iro.umontreal.ca/~boulanni/icml2012
- move to above link, and download below Source files (4 files)
- Piano-midi.de1 : Source (124 files, 951 KB) or Piano-roll (7.1 MB)
- Nottingham2 : Source (1037 files, 676.1 KB) or Piano-roll (23.2 MB)
- MuseData3 : Source (783 files, 3.0 MB) or Piano-roll (30.1 MB)
- JSB Chorales : Source (382 files, 210 KB) or Piano-roll (2.0 MB)
- extract downloaded files,
- next, move this extracted files to music-rnn/rnn_lstm_jzs1_eng/data like below.
music-rnn
└── rnn_lstm_jzs1_eng
├── data
│ ├── JSB Chorales
│ │ ├── test
│ │ ├── train
│ │ └── valid
│ ├── MuseData
│ │ ├── test
│ │ ├── train
│ │ └── valid
│ ├── Nottingham
│ │ ├── test
│ │ ├── train
│ │ └── valid
│ └── Piano-midi.de
│ ├── test
│ ├── train
│ └── valid
- for example, to use JSB_Chorales set,
- edit source codes (block of setting Data Set) of train_piano.py like below codes
# ================================================================================
#
# when you wanna train model with all midi files at once
#
DIR_DATA_SRCs = ["/data/JSB_Chorales", "/data/MuseData", "/data/Nottingham", "/data/Piano-midi.de"]
DIR_TTV = ["/test", "/train", "/valid"]
# examples 1
# when u want to use "JSB_chorales/train" data for training - uncomment next 2 lines
path_train = os.getcwd() + DIR_DATA_SRCs[0] + DIR_TTV[1]
path_test = os.getcwd() + DIR_DATA_SRCs[0] + DIR_TTV[0]
# examples 2
# when use only bach`s midi files in /data/MuseData/
# target_str = "bach"
# path_train = os.getcwd() + DIR_DATA_SRCs[1] + DIR_TTV[1]
# path_test = os.getcwd() + DIR_DATA_SRCs[1] + DIR_TTV[0]
# examples 3
# when use midi files in /data/Nottingham/
# path_train = os.getcwd() + DIR_DATA_SRCs[2] + DIR_TTV[1]
# path_test = os.getcwd() + DIR_DATA_SRCs[2] + DIR_TTV[0]
# ================================================================================
#
# set directory name what is including data files which you wanna use at triaing
# set string(target_str) what is included in data files which you wanna use at triaing
#
# target_str = "" # if u use all files at certain directory, don`t set any letters
# TARGET_FOLDER = "waltzes" # directory name which is containing data files for training
# path_train = "./data_for_train/" + TARGET_FOLDER
# init paths of Waltzes
# DIR_WEIGHTS = "./wts_Waltzes/" # save weights file
# DIR_RESULTS = "./predict_Waltzes/" # save debug log
# DIR_PREDICTED_MIDI = "./predMidi_Waltzes/" # save predicted(created) midi file
DIR_WEIGHTS = "./wts_JSB/" # save weights file
DIR_RESULTS = "./predict_JSB/" # save debug log
DIR_PREDICTED_MIDI = "./predMidi_JSB/" # save predicted(created) midi file
# file name to save
filename_result_predict = DIR_RESULTS + 'rnn_lstm_predict_{0}.txt'.format(datetime.now().strftime("%Y.%m.%d.%H:%M:%S"))
# ================================================================================
- in addition, if you want to use files that contain same name in a folder, insert the same name in
target_str = "shared_name"
- for example, in a folder, there are files named 'bach001.mid', 'bach002.mid', etc, modify target_str variable as
target_str = "bach"
- for example, in a folder, there are files named 'bach001.mid', 'bach002.mid', etc, modify target_str variable as