This repository contains the data and source code associated with the paper:
- Timo Knispel, Jan Berges, Arne Schobert, Erik G. C. P. van Loon, Wouter Jolie, Tim Wehling, Thomas Michely, and Jeison Fischer, Unconventional charge-density-wave gap in monolayer NbS₂, arXiv:2307.13791
STM and STS were carried out at a base operating temperature of T₀ = 0.35 K after in-situ transfer from the preparation chamber. STS was performed with the lock-in technique. STM images were taken in constant current mode.
All DFT and DFPT calculations were performed using Quantum ESPRESSO 7.1.
Similarly recent versions should work equally well. (Note that the ab initio
step can be skipped since we provide all relevant output files.) To interface
the EPW code to our elphmod package, the file EPW/src/ephwann_shuffle.f90
has to be modified. After the determination of the Wigner-Seitz points, just
before the Bloch-to-Wannier transform, add the following lines:
IF (ionode) THEN
OPEN (13, file='wigner.dat', action='write', status='replace', &
access='stream')
WRITE (13) dims, dims2
WRITE (13) nrr_k, irvec_k, ndegen_k
WRITE (13) nrr_g, irvec_g, ndegen_g
CLOSE (13)
ENDIF
Our elphmod and StoryLines packages and all other Python requirements can be installed in a virtual environment:
python3 -m venv venv
source venv/bin/activate
python3 -m pip install -r requirements.txt
A LaTeX installation, preferably TeX Live, is required to typeset the figure.
Workflow of the DFT, DFPT, and model calculations:
run.sh
Initial structural relaxation:
cdw_relax.py
(create contents of directoryxyz
)
Variation of parameters:
change_smearing.py
(rerelax CDW structures for different smearings)change_doping.py
(rerelax CDW structures for different dopings)change_scaling.py
(rescale CDW displacements)
Characterization of selected CDW phases:
compute_dos.py
(calculate electron density of states)compute_a2f.py
(calculate phonon density of states and Eliashberg function)compute_modes.py
(calculate and identify amplitude and phase modes)
Plotting:
plot.py
(create Figures 5, S13, S14, and S15)plot_phases.py
(create Figure S11)plot_doping.py
(create Figure S12)
Experimental data shown in the main text:
Figure 1a.txt
Figure 1b.txt
Figure 2a.txt
Figure 2a inset.txt
Figure 2b.txt
Figure 2b inset.txt
Figure 2c.txt
Figure 2c inset.txt
Figure 2d.txt
Figure 2d left inset.txt
Figure 2d right inset.txt
Figure 2e.txt
Figure 2e inset.txt
Figure 2f.txt
Figure 2f inset.txt
Figure 2g.txt
Figure 2g inset.txt
Figure 2h.txt
Figure 3a.txt
Figure 3b.txt
Figure 3c.txt
In Figure 1a, the size was reduced from 250 nm × 250 nm to 250 nm × 166 nm. This reduction is not included in the source data.
In Figure 1b, the minimum height on the graphene surface is corrected to 0 nm.
In the insets of Figure 2a–c and Figure 2e–g, the images were clipped with a 400% zoom.
In the insets of Figure 2d, the images were clipped as a circle in the same location.
Figure 2h shows the FFT intensity of first-order 3 × 3 CDW spots (ICDW) vs. first-order Bragg spots (Iatom) at different temperatures. The spot intensity was extracted by line profiles along the six high symmetry directions in the FFT. For each temperature, the average ratio ICDW/Iatom of all six directions was taken. FFTs were extracted from constant current dI/dV maps as shown in Figure 2e–g.
In Figure 3a, the size was reduced from 3.5 nm × 3.5 nm to 2.7 nm × 2.7 nm. This reduction is not included in the source data.
In Figure 3b, the data was plotted with an arbitrary offset between the spectra at different positions, for clarity. This offset is not included in the source data.
In Figure 3c, the data was plotted with an offset of 10 nS between the spectra, for clarity. This offset is not included in the source data.
Quantum ESPRESSO input files:
scf.in
(self-consistent DFT calculation withpw.x
)nscf.in
(non-self-consistent DFT calculation withpw.x
)ph.in
(DFPT calculation withph.x
)epw.in
(Wannierization withepw.x
)
Relevant Quantum ESPRESSO output files:
NbS2_hr.dat
(hopping parameters)NbS2_wsvec.dat
(superlattice vectors to correct Wigner-Seitz cell)dyn0
...dyn19
(force constants)NbS2.epmatwp
(electron-phonon coupling)wigner.dat
(lattice vectors of electron-phonon coupling)
Relaxed CDW structures:
t1.xyz
t2.xyz
(at doping of -0.1 e/f.u.)t1p.xyz
t2p.xyz
hexagons.xyz
stars.xyz
(at doping of -0.1 e/f.u.)
Data shown in Figure 4 (T1 phase):
smearing+0.0050_t1_hr.dat
scaling+0.0_dos.dat
(also shown in Figures S13, S14, and S15)scaling+0.1_t1_dos.dat
scaling+0.2_t1_dos.dat
scaling+0.3_t1_dos.dat
scaling+0.4_t1_dos.dat
scaling+0.5_t1_dos.dat
scaling+0.6_t1_dos.dat
scaling+0.7_t1_dos.dat
scaling+0.8_t1_dos.dat
scaling+0.9_t1_dos.dat
smearing+0.0050_t1_dos.dat
scaling+0.0_dos_zoom.dat
(also shown in Figures S13, S14, and S15)scaling+0.1_t1_dos_zoom.dat
scaling+0.2_t1_dos_zoom.dat
scaling+0.3_t1_dos_zoom.dat
scaling+0.4_t1_dos_zoom.dat
scaling+0.5_t1_dos_zoom.dat
scaling+0.6_t1_dos_zoom.dat
scaling+0.7_t1_dos_zoom.dat
scaling+0.8_t1_dos_zoom.dat
scaling+0.9_t1_dos_zoom.dat
smearing+0.0050_t1_dos_zoom.dat
(also shown in Figure S12)smearing+0.0150_t1_dyn.dat
(to identify amplitude and phase modes)smearing+0.0130_t1_ifc.dat
modes_t1.dat
smearing+0.0050_t1_a2f.dat
(also shown in Figure S12)
Data shown in Figure S11 (CDW phases):
doping.dat
smearing.dat
Data shown in Figure S12 (doping dependence):
doping-0.02_t1_dyn.dat
(only atomic positions)doping-0.01_t1_dyn.dat
(only atomic positions)smearing+0.0050_t1_dyn.dat
(only atomic positions)doping+0.01_t1_dyn.dat
(only atomic positions)doping+0.02_t1_dyn.dat
(only atomic positions)doping-0.02_t1_dos_zoom.dat
doping-0.01_t1_dos_zoom.dat
smearing+0.0050_t1_dos_zoom.dat
(also shown in Figure 4)doping+0.01_t1_dos_zoom.dat
doping+0.02_t1_dos_zoom.dat
doping-0.02_t1_a2f.dat
doping-0.01_t1_a2f.dat
smearing+0.0050_t1_a2f.dat
(also shown in Figure 4)doping+0.01_t1_a2f.dat
doping+0.02_t1_a2f.dat
Data shown in Figure S13 (hexagons phase):
smearing+0.0050_hexagons_hr.dat
scaling+0.0_dos.dat
(also shown in Figures 4, S14, and S15)scaling+0.1_hexagons_dos.dat
scaling+0.2_hexagons_dos.dat
scaling+0.3_hexagons_dos.dat
scaling+0.4_hexagons_dos.dat
scaling+0.5_hexagons_dos.dat
scaling+0.6_hexagons_dos.dat
scaling+0.7_hexagons_dos.dat
scaling+0.8_hexagons_dos.dat
scaling+0.9_hexagons_dos.dat
smearing+0.0050_hexagons_dos.dat
scaling+0.0_dos_zoom.dat
(also shown in Figures 4, S14, and S15)scaling+0.1_hexagons_dos_zoom.dat
scaling+0.2_hexagons_dos_zoom.dat
scaling+0.3_hexagons_dos_zoom.dat
scaling+0.4_hexagons_dos_zoom.dat
scaling+0.5_hexagons_dos_zoom.dat
scaling+0.6_hexagons_dos_zoom.dat
scaling+0.7_hexagons_dos_zoom.dat
scaling+0.8_hexagons_dos_zoom.dat
scaling+0.9_hexagons_dos_zoom.dat
smearing+0.0050_hexagons_dos_zoom.dat
smearing+0.0150_hexagons_dyn.dat
(to identify amplitude and phase modes)smearing+0.0130_hexagons_ifc.dat
modes_hexagons.dat
smearing+0.0050_hexagons_a2f.dat
Data shown in Figure S14 (T1' phase):
smearing+0.0050_t1p_hr.dat
scaling+0.0_dos.dat
(also shown in Figures 4, S13, and S15)scaling+0.1_t1p_dos.dat
scaling+0.2_t1p_dos.dat
scaling+0.3_t1p_dos.dat
scaling+0.4_t1p_dos.dat
scaling+0.5_t1p_dos.dat
scaling+0.6_t1p_dos.dat
scaling+0.7_t1p_dos.dat
scaling+0.8_t1p_dos.dat
scaling+0.9_t1p_dos.dat
smearing+0.0050_t1p_dos.dat
scaling+0.0_dos_zoom.dat
(also shown in Figures 4, S13, and S15)scaling+0.1_t1p_dos_zoom.dat
scaling+0.2_t1p_dos_zoom.dat
scaling+0.3_t1p_dos_zoom.dat
scaling+0.4_t1p_dos_zoom.dat
scaling+0.5_t1p_dos_zoom.dat
scaling+0.6_t1p_dos_zoom.dat
scaling+0.7_t1p_dos_zoom.dat
scaling+0.8_t1p_dos_zoom.dat
scaling+0.9_t1p_dos_zoom.dat
smearing+0.0050_t1p_dos_zoom.dat
smearing+0.0150_t1p_dyn.dat
(to identify amplitude and phase modes)smearing+0.0115_t1p_ifc.dat
modes_t1p.dat
smearing+0.0050_t1p_a2f.dat
Data shown in Figure S15 (T2' phase):
smearing+0.0050_t2p_hr.dat
scaling+0.0_dos.dat
(also shown in Figures 4, S13, and S14)scaling+0.1_t2p_dos.dat
scaling+0.2_t2p_dos.dat
scaling+0.3_t2p_dos.dat
scaling+0.4_t2p_dos.dat
scaling+0.5_t2p_dos.dat
scaling+0.6_t2p_dos.dat
scaling+0.7_t2p_dos.dat
scaling+0.8_t2p_dos.dat
scaling+0.9_t2p_dos.dat
smearing+0.0050_t2p_dos.dat
scaling+0.0_dos_zoom.dat
(also shown in Figures 4, S13, and S14)scaling+0.1_t2p_dos_zoom.dat
scaling+0.2_t2p_dos_zoom.dat
scaling+0.3_t2p_dos_zoom.dat
scaling+0.4_t2p_dos_zoom.dat
scaling+0.5_t2p_dos_zoom.dat
scaling+0.6_t2p_dos_zoom.dat
scaling+0.7_t2p_dos_zoom.dat
scaling+0.8_t2p_dos_zoom.dat
scaling+0.9_t2p_dos_zoom.dat
smearing+0.0050_t2p_dos_zoom.dat
smearing+0.0150_t2p_dyn.dat
(to identify amplitude and phase modes)smearing+0.0070_t2p_ifc.dat
modes_t2p.dat
smearing+0.0050_t2p_a2f.dat
Relevant force-constants data (not needed for plotting):
smearing+0.0050_t1_ifc.dat
smearing+0.0050_hexagons_ifc.dat
smearing+0.0050_t1p_ifc.dat
smearing+0.0050_t2p_ifc.dat