/CLIT

Primary LanguagePythonBSD 3-Clause "New" or "Revised" LicenseBSD-3-Clause

Cascaded Local Implicit Transformer for Arbitrary-Scale Super-Resolution (CLIT)

This repository contains the PyTorch based official implementation of the paper titled:
Cascaded Local Implicit Transformer for Arbitrary-Scale Super-Resolution CVPR 2023.

Dependencies

  • Python >= 3.7.0
  • PyTorch >= 1.8.0

Train

EDSR-Baseline

Stage1: python train.py --config configs/train/train_edsr_baseline_lit.yaml --name lit_edsr

Stage2: python train.py --config configs/train/train_edsr_baseline_clit2.yaml --name clit_edsr2

Stage3: python train.py --config configs/train/train_edsr_baseline_clit3.yaml --name clit_edsr3

RDN

Stage1: python train.py --config configs/train/train_rdn_lit.yaml --name lit_rdn

Stage1: python train.py --config configs/train/train_rdn_clit2.yaml --name clit_rdn2

Stage1: python train.py --config configs/train/train_rdn_clit3.yaml --name clit_rdn3

SwinIR

Stage1: python train.py --config configs/train/train_swinir_lit.yaml --name lit_swinir

Stage2: python train.py --config configs/train/train_swinir_clit2.yaml --name clit_swinir2

Stage3: python train.py --config configs/train/train_swinir_clit3.yaml --name clit_swinir3

$\ast$ Please note that, if you want to cascadedly train stage2 or stage3 CLIT, you need to modified the "pre_train" property in the configuration so as to load previous stage1 or stage2 model as the pre-trained model.

Ex: train the stage2 CLIT using edsr-baseline model

pre_train: save/lit_edsr/epoch-last.pth

Test

EDSR-Baseline or RDN

bash eval.sh "put the model name here"

SwinIR

bash eval_swinir.sh "put the model name here"

Demo Attention Maps

python demo.py --model save/lit_rdn/epoch-last.pth --img_path assests/0868x4.png --scale 6

Inputs Attention Heads

Additional Quantitative Results

Div2k

Method (SSIM)
x2 x3 x4 x6 x12 x18 x24 x30
EDSR-Baseline-CLIT 0.9397 0.8790 0.8266 0.7503 0.6439 0.6006 0.5771 0.5629
RDN-CLIT 0.9418 0.8829 0.8319 0.7564 0.6497 0.6053 0.5804 0.5657
SwinIR-CLIT 0.9436 0.8859 0.8357 0.7608 0.6534 0.6080 0.5830 0.5675

Set5

Method (SSIM)
x2 x3 x4 x6 x8
RDN-CLIT 0.9474 0.9101 0.8760 0.8053 0.7451
SwinIR-CLIT 0.9482 0.9117 0.8787 0.8131 0.7521

Set14

Method (SSIM)
x2 x3 x4 x6 x8
RDN-CLIT 0.9023 0.8227 0.7619 0.6748 0.6184
SwinIR-CLIT 0.9030 0.8262 0.7656 0.6789 0.6210

B100

Method (SSIM)
x2 x3 x4 x6 x8
RDN-CLIT 0.8962 0.8003 0.7304 0.6404 0.5876
SwinIR-CLIT 0.8975 0.8029 0.7341 0.6443 0.5907

Urban100

Method (SSIM)
x2 x3 x4 x6 x8
RDN-CLIT 0.9298 0.8568 0.7942 0.6918 0.6224
SwinIR-CLIT 0.9335 0.8651 0.8051 0.7070 0.6369

Acknowledgements

This repo is built on LIIF and LTE. Thanks the authors for their contributions and generosity.