In this project, I used the Imagenet Dataset and a U-net model. This model works with the L
channel from LAB COLOR SPACE and can predict the A
and B
channels.
I also used Tensorboard for live results of training and validation.
• io(Scikit-image)
• Torch(Pytorch)
• Numpy
• Cv2(OpenCV)
• Matplotlib
• torch.utils.tensorboard
pip install -r requirement.txt
To get results on new Image.
Extract all files in one folder.
python get_result.py --img "Image path"
python get_result.py --img "Image path" --save-output
python get_result.py --img "Image path" --save-conc
python get_result.py --img_root "C:/user/data/img.jpg" --show --save-output