- CNN: source code for ENSO forecast
- figure: source code for drawing main figures
-
Training with CMIP5 (csh/nino34.cmip.csh)
(1) training (import from sample/nino34.train_cmip.sample)
(2) validation (import from sample/nino34.valid.sample)
(3) ensemble mean (import from sample/nino34.ensmean.sample)
-
Transfer learning with SODA (csh/nino34.transfer.csh)
(1) training (import from sample/nino34.train_transfer.sample)
(2) validation (import from sample/nino34.valid.sample)
(3) ensemble mean (import from sample/nino34.ensmean.sample)
-
Heatmap analysis (csh/nino34.heatmap.csh) (import from sample/nino34.heatmap.sample)
-
Training with CMIP5 (csh/nino_type.cmip.csh)
(1) training (import from sample/nino_type.train_cmip.sample)
(2) validation (import from sample/nino_type.valid.sample)
(3) ensemble mean (import from sample/nino_type.ensmean.sample)
-
Heatmap analysis (csh/nino_type.heatmap.csh) (import from nino_type.heatmap.sample)
-
you can download data set here (1.13GB): https://168.131.122.201/OCL/Data/DL_ENSO/H19_dataset.zip.
-
The data set consists of the following:
-
Dataset for Nino3.4 forecast
(1) Training set (CMIP5/):
Input: [CMIP5.input.36mn.1861_2001.nc] Label for 2-23month lead: [CMIP5.label.nino34.12mn_3mv.1863_2003.nc] Label for 1month lead: [CMIP5.label.nino34.12mn_2mv.1863_2003.nc]
(2) Training set for transfer learning (SODA/):
Input: [SODA.input.36mn.1871_1970.nc] Label for 2-23month lead: [SODA.label.nino34.12mn_3mv.1873_1972.nc] Label for 1month lead: [SODA.label.nino34.12mn_2mv.1873_1972.nc]
(3) validation set (GODAS/):
Input: [GODAS.input.36mn.1980_2015.nc] Label for 2-23month lead: [GODAS.label.12mn_3mv.1982_2017.nc] Label for 1month lead: [GODAS.label.12mn_2mv.1982_2017.nc]
-
Dataset for El Nino type forecast
(1) Training set (CMIP5/):
Input: [CMIP5.input.type.NDJ.1861_2001.nc] Label: [CMIP5.label.type.DJF.1863_2003.nc]
(2) validation set (GODAS/):
Input: [GODAS.input.36mn.1980_2015.nc] Label: [GODAS.label.type.DJF.1982_2017.nc]
-
Ham, Y. G., Kim, J. H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, https://doi.org/10.1029/2010JC006695 (2019).
- Tensowflow (https://www.tensorflow.org/install/) ( < version 2.0 )
- netCDF4