/Machine-Learning-Notes

The repository contains notes related to different methods of Machine Learning

Primary LanguageJupyter Notebook

Machine Learning Notes

The repository contains the work related to Machine Learning and some notes from what i have learned in machine learning.

  1. Description Function
  2. Visual Function
  3. Advance Visual Function
  4. Feature Engineering Function
  5. Feature Importance Function
  6. Scoring Function
  7. Feat_imp Function
  8. Image Processing Function
  9. Statistic Function
  10. Model Function
  11. Map Function
  12. Time Series Function
  13. Tunning Function
  14. Interpretable Function
  15. Cluster Function
  16. Generate Data Function
  1. Decision Tree
  2. Random Forest
  3. SVM
  4. Gradient Boosting
    1. Extreme Gradient Boosting Learning Curve
    2. GPBoost_Tree-Boosted Mixed Effects Models
    3. Gradient Boosting Classifiers
  5. Multi-Class Classification
    1. One-vs-Rest and One-vs-One for Multi-Class Classification
  6. Ensemble Methods
    1. Ensemble Method (Hard and Soft Voting)
    2. Weighted Average Ensembles
    3. Dynamic Ensemble Selection (DES)
    4. Super Learner Ensembles
  7. Thesis
    1. Decision Tree
    2. Bagging for DT
    3. Random Forest
    4. Gradient Boosting
    5. Adaboost
    6. Discriminant Analysis
    7. K-Nearest Neighbors
    8. Logistic Regression
    9. Naive Bayes
    10. Neural Networks
    11. SVM Linear
    12. SVM RBF
    13. SVM Sigmoid
    14. Stochastic Gradient Descent (SGD)
    15. ROC
  8. Use cases
    1. Ruang_Guru - Predict Probability of Correct Answer
      1. Dataset
      2. Result
      3. Test Context
      4. Result in ipynb
      5. Result in PDF
  1. Weight of Evidence (WOE) and Information Value (IV)
  1. Text Classification
  2. Text Generation
  3. Text Summarization
  4. Text Manipulation
  5. Facebook FastText Library
  6. Bag of word
  7. TF-IDF
  8. Word2Vec
  1. Grid Search
  2. GridSearchCV
  3. Tunning with Nature Inspired Algorithms
  4. Hyperopt
  5. Keras tuner
  6. Optuna
  1. Basic Neural Network
  2. Deep Neural Networks
  3. Generative Adversarial Networks (GANs)
  4. Improved GANs
  1. AutoEncoders vanilla
  2. AutoEncoders denoiser
  3. Autoencoders are related to PCA [ongoing]
  4. Denoising - Autoencoder
  1. Deep Convolutional GAN - (DCGAN)
  2. Conditional GAN - (CGAN)
  3. Wasserstein GAN - (WGAN)
  4. Least-squares GAN - (LSGAN)
  1. Anomaly detection vanilla
  2. Anomaly detection using PCA [ongoing]
  3. Anomaly detection using Scikit-learn
  4. Anomaly detection using AutoEncoders (PYOD)
  5. Python Outlier Detection (PYOD)
  6. Anomaly detection using Isolation Forest
  7. Anomaly Detection using Benford’s Law
  8. Anomaly Detection using LSTM
  9. Anomaly Detection using OCSVM
  10. Fraud detection using DBSCAN
  11. Anomaly detection using AutoEncoders
  12. Anomaly detection using Variational AutoEncoders
  13. Denoising - Autoencoder
  14. Anomaly Detection using the Restricted Boltzmann machines (RBM)
  15. Anomaly detection with LSTM (time series data)
  16. Anomaly Detection with Temporal convolutional networks (TCN)
  17. Anomaly Detection with Encoder Decoder - Temporal convolutional networks (ED - TCN)
  1. Apriori
  2. Eclat Algorithm
  3. Frequent Itemsets
  4. Frequent Itemsets via Apriori Algorithm
  5. Frequent Itemsets via FP-Growth Algorithm
  6. Maximal Itemsets via FP-Max Algorithm
  1. Feature Interaction
  2. Individual Conditional Expectation (ICE)
  3. Local Interpretable Model-agnostic Explanations (LIME)
  4. Partial Dependence Plot (PDP)
  5. Random Forest Interpretation [ongoing]
  6. SHapley Additive exPlanations (SHAP)
  7. Interpretable Function
  1. PCA
  2. RBF Kernel Principal Component Analysis (RBF PCA)
  1. Simple CNN
    1. Rock_paper_scissors (simple CNN with ImageDataGenerator)
    2. CIFAR 10 (simple CNN)
    3. CIFAR 10 v2 (simple CNN)
    4. MNIST (simple CNN)
  2. Simple CNN with Image Data Generator
    1. Malaria (simple CNN with ImageDataGenerator)
    2. Fashion MNIST (simple CNN)
  3. LeNet
  4. EAST - Text Detector
  5. Y-Network CNN
  6. [ResNet]
  7. [DenseNet]
  8. Automatic Colorization Autoencoder
  9. [Mobile Net V2]
  10. Image Processing Function
  1. Seasonal and Decomposition
  2. Decomposition and Exponential Smoothing
  3. AR, MA and ARIMA
  4. Time Series Forecast with Machine Learning
  5. Time series with ARIMA
  6. Change and convert time and date data
  7. Sequence Problems with LSTM
  8. Time Series Prediction using LSTM and PyTorch
  9. Predict Visitor Forecasting
  1. Simple Customer Segmentation Using RFM Analysis
  2. Select Optimal Number of Clusters
  3. Customer Segmentation Using Cohort and RFM Analysis
  4. Cluster Function
  1. Predictive Maintenance detect Faults from Sensors with CNN
  2. Predictive Maintenance detect Faults from Sensors with CRNN and Spectrograms
  3. Quality Control with Machine Learning
  1. Extreme Event Forecasting with LSTM Autoencoders
  2. Remaining Life Estimation
  3. Survival Analysis with LightGBM plus Poisson Regression
  4. LSTM Autoencoder for Extreme Rare Event Classification
  1. Movie Lens Collaborative Filtering
  2. Cosine similarity
  1. Speech Recognition
  1. Change Detection in Multitemporal Remote Sensing Images
    1. Unsupervised PCA & K-Means
    2. Unsupervised Deep Slow Feature Analysis
    3. Supervised DSMS-FCN
  2. Image-to-Image Translation
    1. Pix2Pix GAN
  3. Map Data Visualization
    1. Map Function