The repository contains the work related to Machine Learning and some notes from what i have learned in machine learning.
- Description Function
- Visual Function
- Advance Visual Function
- Feature Engineering Function
- Feature Importance Function
- Scoring Function
- Feat_imp Function
- Image Processing Function
- Statistic Function
- Model Function
- Map Function
- Time Series Function
- Tunning Function
- Interpretable Function
- Cluster Function
- Generate Data Function
- Decision Tree
- Random Forest
- SVM
- Gradient Boosting
- Multi-Class Classification
- Ensemble Methods
- Thesis
- Use cases
- Text Classification
- Text Generation
- Text Summarization
- Text Manipulation
- Facebook FastText Library
- Bag of word
- TF-IDF
- Word2Vec
- AutoEncoders vanilla
- AutoEncoders denoiser
- Autoencoders are related to PCA [ongoing]
- Denoising - Autoencoder
- Deep Convolutional GAN - (DCGAN)
- Conditional GAN - (CGAN)
- Wasserstein GAN - (WGAN)
- Least-squares GAN - (LSGAN)
- Anomaly detection vanilla
- Anomaly detection using PCA [ongoing]
- Anomaly detection using Scikit-learn
- Anomaly detection using AutoEncoders (PYOD)
- Python Outlier Detection (PYOD)
- Anomaly detection using Isolation Forest
- Anomaly Detection using Benford’s Law
- Anomaly Detection using LSTM
- Anomaly Detection using OCSVM
- Fraud detection using DBSCAN
- Anomaly detection using AutoEncoders
- Anomaly detection using Variational AutoEncoders
- Denoising - Autoencoder
- Anomaly Detection using the Restricted Boltzmann machines (RBM)
- Anomaly detection with LSTM (time series data)
- Anomaly Detection with Temporal convolutional networks (TCN)
- Anomaly Detection with Encoder Decoder - Temporal convolutional networks (ED - TCN)
- Apriori
- Eclat Algorithm
- Frequent Itemsets
- Frequent Itemsets via Apriori Algorithm
- Frequent Itemsets via FP-Growth Algorithm
- Maximal Itemsets via FP-Max Algorithm
- Feature Interaction
- Individual Conditional Expectation (ICE)
- Local Interpretable Model-agnostic Explanations (LIME)
- Partial Dependence Plot (PDP)
- Random Forest Interpretation [ongoing]
- SHapley Additive exPlanations (SHAP)
- Interpretable Function
- Simple CNN
- Simple CNN with Image Data Generator
- LeNet
- EAST - Text Detector
- Y-Network CNN
- [ResNet]
- [DenseNet]
- Automatic Colorization Autoencoder
- [Mobile Net V2]
- Image Processing Function
- Seasonal and Decomposition
- Decomposition and Exponential Smoothing
- AR, MA and ARIMA
- Time Series Forecast with Machine Learning
- Time series with ARIMA
- Change and convert time and date data
- Sequence Problems with LSTM
- Time Series Prediction using LSTM and PyTorch
- Predict Visitor Forecasting
- Simple Customer Segmentation Using RFM Analysis
- Select Optimal Number of Clusters
- Customer Segmentation Using Cohort and RFM Analysis
- Cluster Function
- Predictive Maintenance detect Faults from Sensors with CNN
- Predictive Maintenance detect Faults from Sensors with CRNN and Spectrograms
- Quality Control with Machine Learning
- Extreme Event Forecasting with LSTM Autoencoders
- Remaining Life Estimation
- Survival Analysis with LightGBM plus Poisson Regression
- LSTM Autoencoder for Extreme Rare Event Classification
- Change Detection in Multitemporal Remote Sensing Images
- Image-to-Image Translation
- Map Data Visualization