/aisaturdays-proteins

Code for the proteins properties prediction for the AI Saturdays Murcia

Primary LanguageJupyter Notebook

🧬 Clustering Proteins 🧬

Project for the AI Saturdays Murcia

🎯 Objetivo

Poder agrupar JERARQUICAMENTE las secuencias (que contengan el dominio Macro) de forma óptima. Empezar por la familia macro y luego hacer para otras familias.

Como una árbol filogenético.

💾 Datos

Datos de entrada:

  1. Aminoacidos solo
  2. Aminoacidos con su pertenencia a algún dominio si lo hubiere.

Proteinas que contienen el dominio Macro

Dataset Num secuencias Enlace
Pfam 8.832 https://pfam.xfam.org/family/Macro
Uniprot 39.133 https://www.uniprot.org/uniprot/?query=macro

Todas las proteinas

Dataset 26/2/2020 Num secuencias Compr. Descompr. Descripción
UniProtKB Varsplic 40.255 8 MB 28 MB Para pruebas pequeñas
UniProtKB Swissprot 561.911 85 MB 264 MB Manually annotated and reviewed
UniProtKB TrEMBL 177.754.527 39.2 GB Automatically annotated and not reviewed
UniRef50 39.178.216 7.3 GB Hasta 50% de similaridad.
UniRef90 107.153.647 23.1 GB Hasta 90% de similaridad.
UniRef100 216.491.817 51.1 GB Todas.
UniParc 310.472.414 62.3 GB Todo de todo.
Pfam (release 27.0) 21.827.419 Secuencia + Dominio. 16.479 families.
Protein Data Bank (PDB) 160.000 Secuencias + Estructura 3D
  • Enlaces
    • UniProtKB: ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/
    • UniRef: ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/uniref/
    • UniParc: ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/uniparc/
    • Pfam: ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release

🖥️ Métodos

No Deep Learning

  • Countvectorizer: Contar cuantas veces aparece cada letra.
  • Term Frequency (TF): Contar cuantas veces aparece cada letra y dividir entre la longitud de la secuencia.
  • TF-IDF: Term-Frequency times Inverse Document-Frequency.
  • N-gramas
  • N-gramas con ruido

Deep Learning

Aprendizaje no supervisado (sólo para deep learning)

  • Redes recurrentes -> Language Model (LM) -> Predecir el siguinete aminoácido (ver ULMFiT)
  • Transformers -> Masked Language Model (MLM) -> Predecir el aminoacido oculto (ver BERT)
  • Transformers -> Next Sentence Prediction (NSP) -> Predecir si subsecuencias son consecutivas o no (ver BERT)
  • Transformers -> Replaced Token Detection (RTD) -> Predecir si amonoácido real o no (ver ELECTRA)

Biology Papers

More papers on https://github.com/yangkky/Machine-learning-for-proteins