Capturing Conversational Interaction for Question Answering via Global History Reasoning
NAACL Findings 2022
We present GHR for conversational question answering (CQA). You can train ELECTRA by using our framework, GHR, described in our paper.
$ conda create -n GHR python=3.8.10
$ conda activate GHR
$ conda install tqdm
$ conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 -c pytorch
$ pip install transformers==3.5.0
We use the QuAC (Choi et al., 2018) dataset for training and evaluating our models, and test on the leaderboard.
The following example fine-tunes ELECTRA on the QuAC dataset by using GHR. We performed all experiments using a single 16GB GPU (Tesla V100).
INPUT_DIR=./datasets/
OUTPUT_DIR=./tmp/model
CUDA_VISIBLE_DEVICES=0 python3 run_quac.py \
--model_type electra \
--model_name_or_path electra-large \
--do_train \
--do_eval \
--data_dir ${INPUT_DIR} \
--train_file train.json \
--predict_file dev.json \
--output_dir ${OUTPUT_DIR} \
--per_gpu_train_batch_size 12 \
--num_train_epochs 2 \
--learning_rate 2e-5 \
--weight_decay 0.01 \
--threads 20 \
--do_lower_case \
--fp16 --fp16_opt_level "O2" \
--evaluate_during_training \
--max_answer_length 50 --cache_prefix electra-large
By default, we use mixed precision apex --fp16
for acceleration training and prediction.
The following example evaluates our trained model with the development set of QuAC.
INPUT_DIR=./datasets/
MODEL_DIR=./tmp/model/
OUTPUT_DIR=./tmp/
CUDA_VISIBLE_DEVICES=0 python3 run_quac.py \
--model_type electra \
--model_name_or_path ${MODEL_DIR} \
--do_eval \
--data_dir ${INPUT_DIR} \
--train_file train.json \
--predict_file dev.json \
--output_dir ${OUTPUT_DIR} \
--per_gpu_train_batch_size 12 \
--num_train_epochs 2 \
--learning_rate 2e-5 \
--weight_decay 0.01 \
--threads 20 \
--do_lower_case \
--fp16 --fp16_opt_level "O2" \
--evaluate_during_training \
--max_answer_length 50 --cache_prefix electra-large
Evaluating models trained with predefined hyperparameters yields the following results:
DEV Results: {'F1': 74.9} TEST Results: {'F1': 73.7}
@inproceedings{qian2022capturing,
title={Capturing Conversational Interaction for Question Answering via Global History Reasoning},
author={Qian, Jin and Zou, Bowei and Dong, Mengxing and Li, Xiao and Aw, Aiti and Hong, Yu},
booktitle={Findings of the Association for Computational Linguistics: NAACL 2022},
pages={2071--2078},
year={2022}
}