Goodtables is a framework to validate tabular data. It can check the structure of your data (e.g. all rows have the same number of columns), and its contents (e.g. all dates are valid).
- Structural checks: Ensure that there are no empty rows, no blank headers, etc.
- Content checks: Ensure that the values have the correct types ("string", "number", "date", etc.), that their format is valid ("string must be an e-mail"), and that they respect the constraints ("age must be a number greater than 18").
- Support for multiple tabular formats: CSV, Excel files, LibreOffice, Data Package, etc.
- Parallelized validations for multi-table datasets
- Command line interface
pip install goodtables
pip install goodtables[ods] # If you need LibreOffice's ODS file support
goodtables data.csv
Use goodtables --help
to see the different options.
from goodtables import validate
report = validate('invalid.csv')
report['valid'] # false
report['table-count'] # 1
report['error-count'] # 3
report['tables'][0]['valid'] # false
report['tables'][0]['source'] # 'invalid.csv'
report['tables'][0]['errors'][0]['code'] # 'blank-header'
You can read a more in depth explanation on using goodtables with Python on the developer documentation section. Check also the examples folder for other examples.
The basic checks can't be disabled, as they deal with goodtables being able to read the files.
check | description |
---|---|
io-error | Data reading error because of IO error. |
http-error | Data reading error because of HTTP error. |
source-error | Data reading error because of not supported or inconsistent contents. |
scheme-error | Data reading error because of incorrect scheme. |
format-error | Data reading error because of incorrect format. |
encoding-error | Data reading error because of an encoding problem. |
These checks validate that the structure of the file are valid.
check | description |
---|---|
blank-header | There is a blank header name. All cells in the header row must have a value. |
duplicate-header | There are multiple columns with the same name. All column names must be unique. |
blank-row | Rows must have at least one non-blank cell. |
duplicate-row | Rows can't be duplicated. |
extra-value | A row has more columns than the header. |
missing-value | A row has less columns than the header. |
These checks validate the contents of the file. To use them, you need to pass a Table Schema. If you don't have a schema, goodtables can infer it if you use the infer_schema
option.
If your schema only covers part of the data, you can use the infer_fields
to infer the remaining fields.
Lastly, if the order of the fields in the data is different than in your schema, enable the order_fields
option.
check | description |
---|---|
schema-error | Schema is not valid. |
non-matching-header | The header's name in the schema is different from what's in the data. |
extra-header | The data contains a header not defined in the schema. |
missing-header | The data doesn't contain a header defined in the schema. |
type-or-format-error | The value can’t be cast based on the schema type and format for this field. |
required-constraint | This field is a required field, but it contains no value. |
pattern-constraint | This field value's should conform to the defined pattern. |
unique-constraint | This field is a unique field but it contains a value that has been used in another row. |
enumerable-constraint | This field value should be equal to one of the values in the enumeration constraint. |
minimum-constraint | This field value should be greater or equal than constraint value. |
maximum-constraint | This field value should be less or equal than constraint value. |
minimum-length-constraint | A length of this field value should be greater or equal than schema constraint value. |
maximum-length-constraint | A length of this field value should be less or equal than schema constraint value. |
check | description |
---|---|
blacklisted-value | Ensure there are no cells with the blacklisted values. |
deviated-value | Ensure numbers are within a number of standard deviations from the average. |
sequential-value | Ensure numbers are sequential. |
truncated-value | Detect values that were potentially truncated. |
custom-constraint | Defines a constraint based on the values of other columns (e.g. value * quantity == total ). |
Sometimes we have to check for some values we don't want to have in out dataset. It accepts following options:
option | type | description |
---|---|---|
column | int/str | Column number or name |
blacklist | list of str | List of blacklisted values |
Consider the following CSV file:
id,name
1,John
2,bug
3,bad
5,Alex
Let's check that the name
column doesn't contain rows with bug
or bad
:
from goodtables import validate
report = validate('data.csv', checks=[
{'blacklisted-value': {'column': 'name', 'blacklist': ['bug', 'bad']}},
])
# error on row 3 with code "blacklisted-value"
# error on row 4 with code "blacklisted-value"
This check helps to find outlines in a column containing positive numbers. It accepts following options:
option | type | description |
---|---|---|
column | int/str | Column number or name |
average | str | Average type, either "mean", "median" or "mode" |
interval | int | Values must be inside range average ± standard deviation * interval |
Consider the following CSV file:
temperature
1
-2
7
0
1
2
5
-4
100
8
3
We use median
to get an average of the column values and allow interval of 3 standard deviations. For our case median is 2.0
and standard deviation is 29.73
so all valid values must be inside the [-87.19, 91.19]
interval.
report = validate('data.csv', checks=[
{'deviated-value': {'column': 'temperature', 'average': 'median', 'interval': 3}},
])
# error on row 10 with code "deviated-value"
This checks is for pretty common case when a column should have integers that sequentially increment. It accepts following options:
option | type | description |
---|---|---|
column | int/str | Column number or name |
Consider the following CSV file:
id,name
1,one
2,two
3,three
5,five
Let's check if the id
column contains sequential integers:
from goodtables import validate
report = validate('data.csv', checks=[
{'sequential-value': {'column': 'id'}},
])
# error on row 5 with code "sequential-value"
Some database or spreadsheet software (like MySQL or Excel) could cutoff values on saving. There are some well-known heuristics to find this bad values. See https://github.com/propublica/guides/blob/master/data-bulletproofing.md for more detailed information.
Consider the following CSV file:
id,amount,comment
1,14000000,good
2,2147483647,bad
3,32767,bad
4,234234234,bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbad
To detect all probably truncated values we could use truncated-value
check:
report = validate('data.csv', checks=[
'truncated-value',
])
# error on row 3 with code "truncated-value"
# error on row 4 with code "truncated-value"
# error on row 5 with code "truncated-value"
With Table Schema we could create constraints for an individual field but sometimes it's not enough. With a custom constraint check every row could be checked against given limited python expression in which variable names resolve to column values. See list of available operators. It accepts following options:
- constraint (str)
- Constraint definition (e.g.
col1 + col2 == col3
)
Consider csv file like this:
id,name,salary,bonus
1,Alex,1000,200
2,Sam,2500,500
3,Ray,1350,500
4,John,5000,1000
Let's say our business rule is to be shy on bonuses:
report = validate('data.csv', checks=[
{'custom-constraint': {'constraint': 'salary > bonus * 4'}},
])
# error on row 4 with code "custom-constraint"
The validation report follows the JSON Schema defined on
goodtables/schemas/report.json. As an example, this is
the report generated by running goodtables --row-limit 5 --json
on the file
data/datapackages/invalid/datapackage.json:
{
"time": 0.015,
"valid": false,
"error-count": 2,
"table-count": 2,
"tables": [
{
"datapackage": "data/datapackages/invalid/datapackage.json",
"time": 0.005,
"valid": false,
"error-count": 1,
"row-count": 4,
"source": "data/datapackages/invalid/data.csv",
"headers": [
"id",
"name",
"description",
"amount"
],
"format": "inline",
"schema": "table-schema",
"errors": [
{
"code": "blank-row",
"row-number": 3,
"message": "Row 3 is completely blank"
}
]
},
{
"datapackage": "data/datapackages/invalid/datapackage.json",
"time": 0.004,
"valid": false,
"error-count": 1,
"row-count": 5,
"source": "data/datapackages/invalid/data2.csv",
"headers": [
"parent",
"comment"
],
"format": "inline",
"schema": "table-schema",
"errors": [
{
"code": "blank-row",
"row-number": 4,
"message": "Row 4 is completely blank"
}
]
}
],
"warnings": [
"Table \"data/datapackages/invalid/data2.csv\" inspection has reached 5 row(s) limit"
],
"preset": "datapackage"
}
We follow the Semantic Versioning specification to define our version
numbers. This means that we'll increase the major version number when there's a
breaking change. Because of this, we recommend you to explicitly specify the
goodtables version on your dependency list (e.g. setup.py
or
requirements.txt
).
Goodtables validates your tabular dataset to find structural and content
errors. Consider you have a file named invalid.csv
. Let's validate it:
report = validate('invalid.csv')
We could also pass a remote URI instead of a local path. It supports CSV, XLS, XLSX, ODS, JSON, and all other formats supported by the tabulator library.
The output of the validate()
method is a report dictionary. It includes
information if the data was valid, count of errors, list of table reports, which
individual checks failed, etc.
Resulting report will be looking like this:
{
"time": 0.009,
"error-count": 1,
"warnings": [
"Table \"data/invalid.csv\" inspection has reached 1 error(s) limit"
],
"preset": "table",
"valid": false,
"tables": [
{
"errors": [
{
"row-number": null,
"message": "Header in column 3 is blank",
"row": null,
"column-number": 3,
"code": "blank-header"
}
],
"error-count": 1,
"headers": [
"id",
"name",
"",
"name"
],
"scheme": "file",
"row-count": 2,
"valid": false,
"encoding": "utf-8",
"time": 0.007,
"schema": null,
"format": "csv",
"source": "data/invalid"
}
],
"table-count": 1
}
Rase report errors are standardized and described in Data Quality Spec. The errors are divided in one of the following categories:
source
- data can't be loaded or parsedstructure
- general tabular errors like duplicate headersschema
- error of checks against Table Schemacustom
- custom checks errors
Check is a main validation actor in goodtables. The list of enabled checks can
be changed using checks
and skip_checks
arguments. Let's explore the options
on an example:
report = validate('data.csv') # by default structure and schema (if available) checks
report = validate('data.csv', checks=['structure']) # only structure checks
report = validate('data.csv', checks=['schema']) # only schema (if available) checks
report = validate('data.csv', checks=['bad-headers']) # check only 'bad-headers'
report = validate('data.csv', skip_checks=['bad-headers']) # exclude 'bad-headers'
By default a dataset will be validated against all available Data Quality Spec
errors. Some checks can be unavailable for validation. For example, if the
schema isn't provided, only the structure
checks will be done.
Goodtables support different formats of tabular datasets. They're called presets. A tabular dataset is some data that can be split in a list of data tables, as:
We can change the preset using the preset
argument for validate()
. By
default, it'll be inferred from the source, falling back to table
. To validate
a data package, we can do:
report = validate('datapackage.json') # implicit preset
report = validate('datapackage.json', preset='datapackage') # explicit preset
This will validate all tabular resources in the datapackage.
It's also possible to validate a list of files using the "nested" preset. To do
so, the first argument to validate()
should be a list of dictionaries, where
each key in the dictionary is named after a parameter on validate()
. For example:
report = validate([{'source': 'data1.csv'}, {'source': 'data2.csv'}]) # implicit preset
report = validate([{'source': 'data1.csv'}, {'source': 'data2.csv'}], preset='nested') # explicit preset
Is similar to:
report_data1 = validate('data1.csv')
report_data2 = validate('data2.csv')
The difference is that goodtables validates multiple tables in parallel, so calling using the "nested" preset should run faster.
This project follows the Open Knowledge International coding standards.
We recommend you to use virtualenv
to isolate goodtables from the rest of the
packages in your machine.
To install goodtables and the development dependencies, run:
$ make install
To run the tests, use:
$ make test
To create a custom check user could use a check
decorator. This way the builtin check could be overridden (use the spec error code like duplicate-row
) or could be added a check for a custom error (use type
, context
and position
arguments):
from goodtables import validate, check, Error
@check('custom-check', type='custom', context='body')
def custom_check(cells):
errors = []
for cell in cells:
message = 'Custom error on column {column_number} and row {row_number}'
error = Error(
'custom-error',
cell,
message
)
errors.append(error)
return errors
report = validate('data.csv', checks=['custom-check'])
For now this documentation section is incomplete. Please see builtin checks to learn more about checking protocol.
To create a custom preset user could use a preset
decorator. This way the builtin preset could be overridden or could be added a custom preset.
from tabulator import Stream
from tableschema import Schema
from goodtables import validate
@preset('custom-preset')
def custom_preset(source, **options):
warnings = []
tables = []
for table in source:
try:
tables.append({
'source': str(source),
'stream': Stream(...),
'schema': Schema(...),
'extra': {...},
})
except Exception:
warnings.append('Warning message')
return warnings, tables
report = validate(source, preset='custom-preset')
For now this documentation section is incomplete. Please see builtin presets to learn more about the dataset extraction protocol.
New features:
- A new key added to the
error.to_dict
return:message-data
Breaking changes:
- Checks method signature now only receives the current row's
cells
list - Checks raise errors by returning an array of
Error
objects - Cells have the row number in the
row-number
key - Files with ZIP extension are presumed to be datapackages, so
goodtables mydatapackage.zip
works - Improvements to goodtables CLI (#233)
- New
goodtables init <data paths>
command to create a newdatapackage.json
with the files passed as parameters and their inferred schemas.
Bug fixes:
- Fix bug with
truncated-values
check on date fields (#250)
New API added:
- Validation
source
now could be apathlib.Path
Improved behaviour:
- rebased on Data Quality Spec v1
- rebased on Data Package Spec v1
- rebased on Table Schema Spec v1
- treat primary key as required/unique field
New advanced checks added:
blacklisted-value
custom-constraint
deviated-value
sequential-value
truncated-value
New API added:
report.preset
report.tables[].schema
New API added:
report.tables[].scheme
report.tables[].format
report.tables[].encoding
This version includes various big changes. A migration guide is under development and will be published here.
First version of goodtables
.